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INTRODUCTION 

The phenomenon of ion exchange has been recognized since 

the middle of the 19th century (1, 2). Many of the early 

scientific investigations were carried out with clays and min­

erals. Among the minerals that attracted the attention of 

scientists were the zeolites. These can be regarded as built 

up by an alumino-sllicate skeleton together with a sufficient 

number of exchangeable cations such as sodium (I), potassium 

(I), magnesium (II), or calcium (II). At the turn of the cen­

tury artificial silicates were prepared and have been success­

fully used on a large scale for water softening. 

The ion exchange properties of many natural organic ma­

terials such as cellulose and coal were also studied. How­

ever, applications were few because their capacities are low 

and their acidic groups are ionized only in alkaline solutions. 

Since 1935 there have been two parallel developments of 

organic exchangers. In one case, many processes have been 

patented for modifying the properties of the natural materials. 

In the other, a large number of artificial resins of suitable 

structure have been synthesized in the laboratory. 

The first synthetic ion-exchange resins were prepared by 

two English chemists, B. A. Adams and E. L. Holmes (3), in 

1935. Both cation and anion exchange resins were prepared 

and their combined use for total removal of salts was 
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demonstrated. The cation resin was synthesized via the con­

densation of a dihydric phenol and formaldehyde, followed by 

sulfonation. The anion resin was a condensation product of 

m-phenylenediamine and formaldehyde. The acidic -SO^H group 

in the former and the basic -NHg group in the latter are the 

exchangeable centers. 

This classical pioneer work of Adams and Holmes laid the 

ground work for the production of the high capacity and se­

lective resins in use today. The strongly acidic cation ex­

change resins and strongly basic anion exchange resins in 

current use are prepared from polystyrene which has been 

crosslinked with a specified amount of divinylbenzene. The 

crosslinked polystyrene is sulfonated to introduce the -SO3H 

group for the cation resin. In the preparation of the anion 

resin the crosslinked polystyrene is first chloromethylated 

and then converted to a quaternary amine (exchange center) by 

reaction with a tertiary amine. Of utmost importance is the 

synthesis of the anion resin since the applications of previ­

ous anion exchangers were seriously limited owing to a lack of 

high capacity and good stability. 

The widespread availability of relatively cheap and sta­

ble synthetic ion exchangers of high capacity has played an 

important role in analytical chemistry. The analyst has used 

the ion exchange technique for the concentration of electro­

lytes, fractionation of ions, removal of interfering ions, 

preparation of reagents, the dissolution of insoluble 
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electrolytes, and separation of organic and biochemical sub­

stances. Of prime importance is the ability to attain a rapid, 

complete separation of one metal from another or from a com­

plex mixture. Of equal importance is the separation of multi-

component systems into less complex mixtures. 

The rapid development of this analytical technique, which 

has taken place during the last two decades, was undoubtedly 

sparked by the availability of the resin and the application 

of chromatographic separations for similar elements. The 

chromatographic technique was introduced by Spedding et al. 

(4-10) and Ketelle and Boyd (11, 12) in 19^7 for the separation 

of the rare earths. Elution, after adsorption of the rare 

earths on a strong cation resin in the hydrogen form, was with 

a dilute solution of citric acid at a low pH. The separation 

was later Improved by using a copper (II) form resin and elu-

tlng with EDTA [(ethylenedinitrilo) tetraacetic acid] (13). 

Following the rare earth work the chromatographic tech­

nique was used for the separation of other groups of similar 

elements. The alkali metals (14-16), alkaline earths (16-18), 

zirconium and hafnium (19-22), and the trans-uranlc (actinlde) 

elements (23, 24) were separated. Similarly, the halides (16, 

25, 26) and condensed phosphates (ortho-, pyro-, tri-, trimeta-, 

and tetrametaphosphates) 27-29) were separated. 

The technique has also been employed for the separation of 

organic materials on ion exchange resins. Moore and Stein 
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(30-32) successfully separated a synthetic mixture of 50 amino 

acids and related compounds. More recently, Rieman and his 

group (33-37) developed the technique "salting out chromatog­

raphy H for the separation of water-soluble non-electrolytes 

with ion exchange resins and aqueous salt solutions. Calculat­

ions based on plate theory were used extensively to predict 

conditions for the separations. 

The time necessary for any separation is closely related 

to the adsorbability ratios of the materials. In analytical 

work the time element is often the determining factor in se­

lection of a separation scheme. For this reason the adsorba­

bility ratio may often be altered to a more favorable value by 

taking advantage of the solution chemistry of the materials to 

be separated. Not only is the time element improved but also 

new avenues for separations are opened. Advantage can be taken 

of such properties as complexing reactions and specific acid-

base reactions. Essentially, these are devices for altering 

the effective charge of the ions. 

Reactions which would accentuate differences between 

metals are those which lead to formation of negatively charged 

complexes. The charge may not only be altered but actually re­

versed. Thus metal separations may become as simple as anions 

from cations. 

Apparently the use of anion exchange for the recovery of 

metals was first suggested in 19^5 by Sussman et al. (38) in 
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connection with those elements which normally occur as nega­

tively charged ions in solution. In 1948 Kraus, Nelson, and 

associates (39 > 40) initiated the first complete study of the 

behavior of metal ions on a strongly basic anion exchange res­

in. In the presence of hydrochloric acid many elements which 

were considered not to form strong negatively charged com­

plexes were found to adsorb on the resin. By adjustment of 

the elutlng medium so that the concentration of adsorbed com­

plex was drastically decreased these elements could then be 

removed systematically. 

The adsorbabilltles or distribution coefficients were 

measured for practically every metal over a range of 0.1 to 

12 M hydrochloric acid. In many cases, several oxidation 

states of the same metal were also studied. Graphs were made 

of the distribution coefficient vs. concentration of hydro­

chloric acid for each of the elements. Also from this data, 

a table was prepared which gives the approximate elution order 

of the metallic elements and the proper concentration of hydro­

chloric acid to use for their elution. The curves and the ta­

ble, being so complete, have proven to be of tremendous value 

to the analyst as it is a relatively simple matter for him to 

decide if this scheme is applicable to his separation problem. 

This study has been extended by the use of metal chloride 

salts In the elutlng medium. 

The basic procedure Is to load the sample onto the anion 

exchange column out of strong hydrochloric acid. By decreasing 
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the concentration of hydrochloric acid in the eluent one metal 

is eluted from the remainder. The eluent concentration is de­

creased again and another metal is eluted. This process is re­

peated until the separation is complete. Some typical examples 

to illustrate the broad scope of the method are the separation 

of the following mixtures: Ni(II)-Mn(II)-Co(II)-Cu(II)-Fe(III)-

Zn(II), V(IV)-Ti(IV)-Fe(III), and As(V)-As(III) as done by 

Kraus and Nelson (39). In each case the order of elution is 

given and progressively weaker hydrochloric acid is used as 

eluent. Similarly, Wilkens and Hibbs (41-45) have used this 

scheme extensively in the determination of metals in various 

alloys. Berman and KcBryde (46, 47) measured the distribution 

coefficients of the platinium metals by a similar technique and 

used these data for their separation. 

The theoretical aspects of the adsorption have been dis­

cussed by Home et al. (48-50), Marcus (51-53), and Herber and 

Irvine (54). 

Because of the polymerization or precipitation tendencies 

of several elements in the 4th and 5th group, even at high 

acidities, the hydrochloric acid elution scheme has been mod­

ified by the addition of hydrofluoric acid. The fluoride ion 

serves as an effective ligand for inhibiting these hydrolytic 

reactions. Studies similar to the hydrochloric acid investi­

gation have been carried out for the hydrofluoric-hydrochloric 

acid mixed system by Kraus et al. (39> 40, 55-58) and others 



www.manaraa.com

7 

(59-62). This system has also been used extensively for sepa­

rations, particularly if the mixture contains the 4th and/or 5th 

group elements. A prime example of the utility of this method 

is the complete separation of an eleven component high tempera­

ture alloy (63). Other alloys have also been separated by this 

scheme (64, 65). 

Many other inorganic ligands have been used for anion ex­

change separations. Among these are the sulfate, nitrate, 

iodide, thiocyanate, bromide, phosphate, and cyanide ions. The 

principal feature of some of these anions is the selectivity, 

because only a few elements may be significantly adsorbed. 

Sulfate and nitrate ion exhibit this for uranium (VI) and 

thorium (IV) (39). 

It has not been the author's intention to present a com­

prehensive review of the rapidly expanding applications of 

cation and anion exchange resins. What has been done, however, 

is to point out the pioneer work in this field. Fortunately, 

the ion exchange field, both theoretical and applications, is 

frequently reviewed and references to the large number of cur­

rent publications are readily available (66-75 ) • 
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EFFECT OF ORGANIC SOLVENTS ON ION EXCHANGE 

Articles describing the use of synthetic ion exchange 

resins in nonaqueous or mixed solvents have appeared princi­

pally in the past nine or ten years. However, the number of 

publications has been small compared to those dealing with 

aqueous Ion exchange. Much of the early nonaqueous investiga­

tions were concerned with the effects of organic solvents on 

exchange equilibrium. 

Regardless of solvent the exchange of univalent ions may 

be represented by the following equation, 

(A+)0 + (B+)i = (A+)i + (B+)0 (1) 

where A+ and B+ represent the ions being exchanged and 1 and o 

represent the resin and outside solution phase, respectively. 

For this reaction the equilibrium quotient involving Ion activ­

ities, a, may be written as: 

K& = a(A+)ia(B+)0 (2) 
a(A+)oa(B+)1 

If the activity coefficients are neglected the expression for 

the equilibrium quotient or selectivity coefficient will be 

where x is the mole fraction of the ion in the resin phase and 

c Is the molar concentration of the ion in the solution phase. 
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The equilibrium quotient, K, is not a constant because it will 

vary with the percent loading on the resin and the percent 

cross-linking. If these properties are held constant a selec­

tivity scale can be set up. This has been done with the unival­

ent cations. Lithium (I) was taken as unity since it is the 

least preferred by the resin. 

This approach to the investigation of ion exchange equilib­

ria has been applied to exchange in nonaqueous and mixed sol­

vents. From the inspection of the data that are available it 

appears that the selectivity coefficient for the exchange of a 

given pair of ions is usually greater when the ions are dis­

solved in an organic solvent of lower dielectric constant than 

water. The coefficient is usually greater when mixed solvents 

are used than when the solvent is either pure component. Methyl 

alcohol, ethyl alcohol, isopropyl alcohol, acetone, and dioxane 

and mixtures of these with water as well as mixed organic sol­

vents have been used in these investigations. Most of these 

studies have been with the univalent cations and strongly acidic 

types of resins. Much of this previous work on cation resins 

has been reviewed by Bonner (76) and Fessier (77). Additional 

work has been reported for exchange equilibria on anion exchange 

resins (78, 79). 

Several investigators have correlated this enhancement of 

selectivity coefficient to the dielectric constant (80-82). 

Davydov and Skoblionok (83) singled this out as the most im­

portant factor affecting the exchange efficiency. The 
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solubility of salts, their dissociation, and the behavior of 

the ions depends largely on the dielectric constant of the 

solvent. 

Rates of exchange are generally slower in nonaqueous 

media necessitating slower flow rates in column operations. 

As the polarity of a solvent decreases the exchange rate will 

decrease. Chance et al. (84) observed the exchange of sodium 

bromide with anion and cation resins in eight different sol­

vents. All exchanges were slower than in water solutions. 

However, only a few were unreasonably slow. 

Ion exchange resins absorb significant amounts of solvent 

in addition to their ability to remove ionic substances. This 

has been investigated by G-regor et al. (85) and Davie s and 

Owen (86). Water mixtures of methyl alcohol, ethyl alcohol, 

isopropyl alcohol, dioxane, and acetone and their absorption 

effects on cation exchange resins were studied. It was found 

that the more polar solvent, water, is preferentially absorbed, 

the degree of preference being greatest at lower water content. 

The absorption is a function of the ionic form of the resin, the 

dielectric constant of each solvent, and the ability of the res­

in to swell. Because the solvent does participate in this man­

ner, it has an important effect on any other ion exchange or ad­

sorption process taking place within the resin. 

Swelling properties of a strong cation resin in different 

forms [hydrogen(I), sodium(I), sllver(I), and ammonium(I)J 

were observed by Gable and Strobel (87) in pure water and pure 
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methyl alcohol. In all cases, the ratio of swollen volume to 

dry volume was less for the methyl alcohol solvent. It was 

concluded that because of the small swelling the solvent-ion 

interaction is probably small, and that there might be con­

siderable ion pair formation between cations and the resin 

sulfonate ions. 

Because less polar solvents produce less swelling, the 

resin is not as porous to ions or molecules in these solvents 

as in water. Thus, the capacity of the resin may be signifi­

cantly lower. Bodamer and Kunln (88) determined the capacity 

of a strong cation resin in a variety of solvents, ethyl alco­

hol, acetone, dioxane, benzene, and gulf oil 361. The values 

were found to be nearly as high as in aqueous solutions. When 

the capacity of a series of anion resins for acetic acid was 

determined in these same solvents, the more porous resins had 

higher capacities. All of the resins except one had higher 

capacities in benzene and Gulf Oil 361 than in water by a fac­

tor of up to four times. The interpretation given was that 

four acetic acid molecules are absorbed for every functional 

group on the resin. This could be pictured as a clustering of 

the polar acetic acid molecules about the polar functional 

groups of the resin without actually having the usual ionic 

bonds established. For further evidence of this, when the res­

in is washed with a more polar solvent, 50-50 ethyl alcohol-

benzene mixture, acetic acid is washed off until the resin 
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contains less than one acetic acid molecule per functional 

group. 

Katzin and G-ebert (89) studied the absorption of lithium 

(I) chloride, lithium(I) nitrate, cobalt(II) chloride, and 

nickel(II) nitrate on anion resins in chloride and nitrate 

forms from acetone solution. They noted that the whole salt 

was retained and suggested as a plausible mechanism that the 

salts of the transition elements might be adsorbed as complex 

anions. On the other hand, Davies and Owen (86) have postu­

lated the possibility of the passage of the salts from acetone 

solutions into the resin by a solvent extraction process. 

Tuck and Welch (90) reported the adsorption of plutonium(IV) 

onto strong anion resin from nitric acid-diethyleneglycoldibutyl 

ether solution as the result of the formation of anion complex­

es. Lofberg (91) studied the adsorption of antimony(III) chlor­

ide and bromide and indlum(III) chloride and bromide on both 

anion and cation exchange resins. The solvent in these studies 

was anhydrous acetic acid containing alkali halides or potas-

sium(I) acetate. It was suggested that the adsorption from 

these solvent mixtures took place through molecular reactions 

rather than through ionic reactions. 

A number of separations on ion exchange resins using a 

nonaqueous or mixed solvent elutlng agent have recently ap­

peared in the literature. Venturello et al. (92) separated 

the alkali metals chromatographically on a cation exchange res­

in. The elutlng agent was a mixture of 25 g. of phenol, 50 ml. 
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of methyl alcohol, and 25 ml. of water. The separation of 

llthium(I) and sodlum(I) Is complete while a slight overlap 

occurs In the sodlum(I)-potasslum(I) separation. The eluting 

agent was the same as that used by Magee and Headrldge (93) for 

the paper chromatographic separation of the alkali metals. 

Davies and Owen (86) also separated the alkali metals on a 

strong cation resin. The eluting agent was 80 percent ace­

tone, 20 percent water, and 0.7 M hydrochloric acid. A par­

tial separation of the isotopes of lithium was also obtained 

by the same method. 

Kember et al. (94) separated copper(II) and nickel(II) on 

a strong cation resin using an acetone or isopropyl alcohol 

solvent containing 4 percent hydrochloric acid and 10 percent 

water, by volume. In the presence of small amounts of water 

copper(II) could easily be eluted while if an anhydrous sys­

tem was used elution was much slower. However, more than 20 

percent water in the solvent caused a decrease in its eluting 

power. Elution characteristics of several other transtion 

metal ions were also reported. Similarly, zinc(II) and copper 

(II) were separated by Buznea et al. (95) • These investiga­

tors used an acetone eluting agent containing 0.5 percent hy­

drochloric acid and 20 percent water. 

Zlegler (96) used a precipitation technique for the re­

tention of lead(II) on a strong base type resin in the sulfate 

form. The resin will retain the lead(II), presumably as lead 
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(II) sulfate, quantitatively only If the solvent contains 50 

percent methyl alcohol, ethyl alcohol, or Isopropyl alcohol. 

Similarly, lead(II), mercury(II), and copper(II) are retained 

quantitatively by an iodide form resin. 

Two interesting applications of non-aqueous media in ion 

exchange were reported by Sanson! (97) and Brusset and Kikin-

dal (98, 99). Sanson! used molten urea as the solvent for the 

separation of cobalt(II) and nickel(II). More than 96 percent 

of the cobalt(II) and less than 5 percent of the nickel(II) was 

retained by a strong anion resin. The latter workers removed 

positively charged iodine or bromine from compounds such as 

iodine nitrate, bromine nitrate, and iodine by a hydrogen form 

ion exchange resin. Absolute ethyl alcohol was the solvent 

used. These could then be transformed into sulfates by ex­

change of cations. 

Iguchi separated a series of sulfur anions (sulfate, sul­

fite, thiosulfate, and sulfide) (100) and a mixture of tellu­

rite, selenite, and sulfite (101) on a strongly basic type 

resin. In both cases, a neutral sodium(I) nitrate or an ammo-

nlum(I) nitrate solution can be used as the eluting solution. 

The effect of organic solvents In the eluting agent was stud­

ied by measurement of adsorbabilities. The addition of ethyl 

alcohol or acetone to the neutral eluting agent caused an In­

crease in adsorbability of all anions except tellurite and 

selenite which remain the same. 
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Methyl n-propyl ketone plus a varying percent of water 

and molarity of hydrochloric acid was the eluting agent used 

"by Carleson (102) for separations on a strongly acidic hydro­

gen form resin. Bismuth(III), cadmium(II), zinc ( II), copper 

(II), cobalt(II)came off the resin In this order upon elution 

with the ketone containing 2 percent 10 M hydrochloric acid. 

Manganese(II) and cobalt(II) were then eluted by increasing 

the hydrochloric acid concentration to 15 percent 8 M and 30 

percent 8 M, respectively. Finally, barium(II) was eluted 

with aqueous 8 M hydrochloric acid. 

Burstall et al. (103) recovered gold(III) from cyanide 

liquor by adsorbing the heavy metal cyanides on a strong anion 

resin. After preliminary elutlons to remove other metals the 

gold was eluted with an acetone solution containing 5 percent 

hydrochloric acid and 5 percent water or a nitric acid, water, 

and ethyl acetate solution of the same composition. 

Korkisch used this enhanced adsorbability principle to 

retain thorium(IV) (104) on a strong anion resin In the ni­

trate form while other metals were being eluted with a mixture 

of nitric acid and water In ethyl alcohol. Similarly, uranium 

(VI) was separated from other metal ions (105) using hydro­

chloric acid and water in ethyl alcohol on a chloride form 

resin. Zinc(II) and cadmlum(II) were separated chromatog­

raphic ally (strongly basic type resin In the chloride form) by 

Berg and Truemper (106) with an elutlng agent containing 0.01 
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M hydrochloric acid and 10 percent methyl alcohol. If the 

methyl alcohol concentration is Increased to 25 percent the 

column length could be reduced considerably and an effective 

separation is still possible. 

Kojlma (10?) 108) and Yoshino and Kurimura (109) have 

studied adsorbabilltles of several of the transition elements 

in mixed solvents containing hydrochloric acid on a strongly 

basic ion exchange resin in the chloride form. Two approaches 

were investigated. One was to hold the acid concentration con­

stant and vary the percent of organic solvent. The other was 

to hold the percent of organic solvent constant and vary the 

hydrochloric acid concentration. Methyl alcohol, ethyl alcohol, 

n-propyl alcohol, and acetone were the organic solvents used. 

The measurement of distribution coefficients in various acid, 

water, solvent combinations were compared to those found in 

water-acid mixtures by Kraus (39 > 40). In all cases, a sig­

nificant increase in adsorption occurred which was dependent 

upon the acid concentration and percent of organic solvent, as 

well as type of solvent, present. If the acid concentration 

is held constant and the percent of organic solvent Is in­

creased, the adsorbabllity Increases. Similarly, if the two 

are reversed an Increase also occurs. The order of the in­

crease, was found to be acetone ^ ethyl alcohol > methyl al­

cohol > n-propyl alcohol. The distribution data were used to 

predict elutlng conditions for a few metal ion mixtures and 

were illustrated by elution curves. The eluting scheme was 
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applied to the analysis of aluminum(III) and copper(II) in 

die-cast zinc alloys. It was suggested that these solvent 

effects may be, as a first approximation, explained by the 

increase in the formation of negatively charged chloro-

complexes of the metal ions. A decrease in the tendency for 

solvation of the metal ions in mixed solvents would promote 

this increase In complex formation. 

Of manifest importance to the investigation to be de­

scribed herein Is the work of Kraus (39> 40) and the work dis­

cussed in the previous paragraph. Their basic methods have 

been broadened by alteration of the hydrochloric acid elutlng 

scheme. This was done by replacing part of the water in the 

eluting agent with an organic solvent. Methyl alcohol, ethyl 

alcohol, isopropyl alcohol, acetone, and dioxane and combina­

tions of these were the solvents used. Enhancement of adsorb-

ability occurs and this advantage is used for metal ion sep­

arations. The quality of some separations, and, of more im­

portance, the number of possible separations has been in­

creased by conducting a systematic distribution coefficient 

study. 
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EXPERIMENTAL 

Apparatus 

Glassware: Kimble "nomax" burettes and Kimble 11 exax11 

pipettes were used throughout this work. Ground glass stop­

pered 125 ml Erlenmeyer flasks were used in the determination 

of the distribution coefficients. All other volumetric glass­

ware used was class A. Ion exchange columns used for the 

separations are illustrated in Figure 1. The length of the 

column is such that there is at least 4 cm. of void space be­

tween the top of the resin bed and top of the glass column. 

The coarse glass frit supports the resin while still permit­

ting a rapid flow rate. A long stem funnel serves as the res­

ervoir. The inside diameter of the columns used were 1.1 and 

2.2 cm. respectively. 

pH Meter: All pH measurements were made with a Beckman 

Model G pH meter equipped with Beckman 1190-80 glass and 1170 

calomel reference electrodes. 

Spectrophotometer: A Beckman Model B spectrophotometer 

with one cm. borosllicate glass cells was used for conventional 

spectrophotometry measurements. The modified Model B (110) 

was used for spectrophotmetric titrations. A Gary Model l4 

(1.0 cm. cells) was used for wavelength scanning. 

Stirrer: A Burrell shaker was used for the equilibration . 

studies. 
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Figure 1. Ion exchange column 
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Reagents 

Ion Exchange Resin: J. T. Baker Chemical Company "Ana­

lyzed Reagent" Dowex 1x8 was the resin used in this study. 

Two mesh sizes, 100 to 200 and 200 to 400 mesh, of this 

strongly basic ion exchange resin were used. Regeneration of 

the resin for continual use was done by the following proce­

dure : The resin (about 2 pounds) was first backwashed with 2 

to 2.5 M perchloric acid until the effluent gives a negative 

chloride test. An additional liter of the perchloric acid 

solution was passed through the column (about 4 liters total). 

Conversion of the resin to the perchlorate form will remove 

any metallic impurities which might be present. After washing 

the resin with water to remove the excess perchloric acid the 

resin was converted to the chloride form by passage of 4-6 

liters of 2-2.5M hydrochloric acid. This was followed by elu­

tion with 2 liters of 1 M and then 2 liters of 0.005 M hydro­

chloric acid. The excess acid was rinsed away with water and 

the resin was filtered with suction. The excess water was re­

moved by washing with absolute ethyl alcohol and then acetone. 

The chloride form resin was air dried and had a water content 

of about 5 to 10 percent by weight. 

EDTA [disodium dlhydrogen (ethylenedinitrilo) tetraace­

tate dihydrate] : Eastman Chemical Company white label grade. 

Zinc Metal: Primary standard zinc metal of 99-99 percent 
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purity obtained from the Piatt Brothers and Company, Waterbury, 

Connecticut. 

Metal Ions Investigated: Bare earth(III) and scandium 

(III) oxides were obtained from the Ames Laboratory of the 

United States Energy Commission. All others were reagent 

grade chloride salts except vanadium(IV), uranium(VI), and 

thorlum(IV). Vanadium was used as the sulfate (VOSO4). Uranyl 

acetate and thorium nitrate were converted to the chlorides by 

anion exchange with chloride form resin. The metal perchlo­

rate s used were from the G-. F. Smith Chemical Company. 

Organic Solvents: J. T. Baker purified methyl alcohol, 

absolute ethyl alcohol, Fisher certified isopropyl alcohol, 

Mallenckrodt analytical grade acetone, and Fisher purified di­

oxane were the solvents used. 

Organic Solvent-Water-Hydrochloric Acid Mixtures: The 

mixtures were made so that the concentration of organic solvent 

and water were expressed as percent by volume and the hydro­

chloric acid concentration as molarity (M). For example, if 

one liter of an 80 percent isopropyl alcohol-1 M hydrochloric 

acid mixture was needed, it was prepared as follows : Eight 

hundred ml. of isopropyl alcohol, 83 ml. of concentrated hydro­

chloric acid, and 117 ml. water were mixed together. Any 

changes in volume due to mixing were disregarded. 

Metal Chloride or Perchlorate Solutions: The chloride or 

perchlorate salts were dissolved in water with a sufficient 



www.manaraa.com

22 

amount of either hydrochloric or perchloric acid present to 

prevent hydrolysis and diluted to volume. The oxides were 

dissolved by the appropriate acid (small excess) and diluted 

to volume. In some cases the solutions were prepared to con­

tain a known percent of organic solvent or concentration of 

hydrochloric acid. All of these solutions were then standard­

ized by an appropriate method. A more detailed description as 

to exact concentrations of the two previous stock solutions 

will be found in a later section. 

Metal Chloride Solutions for Separations: Stock solu­

tions containing about 1.8 mg. of metal Ion/ml. (exact concen­

tration determined) were prepared from the metal chloride or 

oxide. Similarly, stock solutions containing 18 mg. metal 

ion/ml. were prepared. 

All other chemicals except Indicators and colorimetric 

reagents were common reagent grade laboratory chemicals. See 

references for information on specific Indicators and color­

imetric reagents used in analysis. Also, whenever the word 

water is used distilled, deionized water Is Implied unless 

otherwise stated. 

Analytical Procedures 

A. Titration methods 

EDTA: Solutions of EDTA were standardized against stand­

ard zinc(II) solution using azoxlne indicator as described by 

Fritz et al. (111). Standard zinc(II) solution was prepared 
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by weighing an appropriate amount of pure zinc metal. 

Cadium(II), Zinc(II), Copper(II), and Cobalt(II): These 

metal ions were determined by an EDTA titration method using 

azoxlne indicator (111). 

Iron(III): Analyses of iron(III) samples were performed 

by an oxidation-reduction method. The sample in dilute hydro­

chloric acid was passed through a lead reductor. This was 

followed by a one percent hydrochloric acid wash solution. 

The effluent containing iron(II) was titrated with standard 

cerlum(IV) (in sulfuric acid) using ferroin as indicator (112). 

Rare Earths(III) and Thorium(IV): These ions were ana­

lyzed by an EDTA titration method using arsenazo indicator 

(113). A modification in the thorium(IV) procedure was em­

ployed. The titration was performed at 80° C or higher. 

Scandium(III): Analysis was by EDTA titration with meth-

- ylthymol blue as indicator. This was also titrated at temper­

atures of 80° C or higher. 

Manganese(II): Analysis was by EDTA titration with 

Eriochrome Black T as indicator. The titration was performed 

at 80° C in the presence of ascorbic acid (114). 

Uranium(VI): Analysis was by the oxidation-reduction 

method of Sill and Peterson (115). 

Zirconium(IV): Analysis was by the back titration EDTA 

method, using thiourea indicator, of Fritz and Johnson (116). 

Bismuth(III): Analysis was by an EDTA titration using 

thiourea Indicator (117). 
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Chromium(III): Chromium(III) was analyzed by an oxida­

tion-reduction method. Oxidation of chromium(III) to chro-

mlum(VI) was done by adding hydrogen peroxide (30 percent) to 

the basic (NaOH) solution. All of the excess peroxide was re­

moved by heating the solution. The solution was then acidified 

with sulfuric acid up to 4 M and titrated with standard iron 

(II) solution using ferroln indicator. 

Vanadium(IV): Ascorbic acid was first added to the solu­

tion to prevent oxidation of the vanadlum(IV). This was fol­

lowed by the addition of a measured excess of standard EDTA. 

The excess, after a ten minute reaction period, was titrated 

with a standard zinc solution using azoxine as indicator. 

Calcium(II): Analysis was by EDTA titration with thymol-

phthalexone as indicator (118). 

Magnesium(II): Analysis was by EDTA titration using 

Erlochrome Black T as indicator (114). 

B. Colorlmetrlc methods 

Copper(Il), Zinc(II), Thorium(IV), Uranlum(VI), Bismuth 

(III), and Iron(III): The colorlmetrlc reagent used for the 

analysis of copper(II) solutions was neocuprolne (119)- The 

procedure was modified by making the solution $0 percent iso-

propyl alcohol by volume. Zinc(II) (120) was determined by the 

reagent zincon. Thorln (121) was used for the determination 

of thorlum(IV) while arsenazo (122) was used for uranium(VI). 

Thiourea (123) and 1, 10 phenanthroline (112) were used for 
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bismuth(III) and iron(III), respectively. 

Measurement of Distribution Coefficients 

There are two approaches to the development of separation 

procedures by ion exchange. One is a trial and error process 

while the other Is to determine adsorbabilitles (distribution 

coefficients) over a wide range of conditions. The latter 

approach is more fruitful because optimum media for adsorp­

tion and elution can be established more readily from these 

data. Measurement of the distribution coefficients can be done 

by either a batch method or one of several column methods. 

All distribution coefficients reported here were measured 

by the batch method using Dowex 1 X8, chloride form, 100 to 200 

mesh resin. It was felt that the advantages of the batch meth­

od, simultaneous equilibration of a large number of samples, 

ease in analysis, and relatively short time per experiment, 

outweighed the advantages of the column methods. The batch 

method consists, simply, of equilibrating small known amounts 

of resin and solution, followed by analysis of one or both of 

the phases. In all of these studies the aqueous phase was ana­

lyzed before and after equilibration. The concentration of 

metal ion on the resin was determined by difference. 

The distribution coefficients may be expressed in any con­

venient set of units. Amount of metal per gram of dry resin 

and amount of metal per milliliter of solution were the units 

chosen. The batch distribution coefficient, D, was then 
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computed according to equation 4: 

D = metal on resln/g. of dry resin (4) 
meq. metal in solution/ ml. of solution 

The batch-distribution coefficient, D, is related to the 

volume distribution coefficient Dv> from column methods, by 

the following equation: 

Dv = D p (5) 

where p is the bed density (kg. of dry resin per liter of 

bed). p is determined by measuring the volume of a settled 

wet column containing a known weight of dry exchanger. Dv 

In turn, can be related to the volume of eluent required to 

elute the constituent to its adsorption or elution maximium 

on the Gaussian elution curve by the following equation: 

Dv = v_ „ i (6) 
Ad 

Here, v is the volume of eluent (ml.) which moves a band max­

imum d (cm.) in a column of cross sectional area A (sq. cm.) 

and fractional interstitial volume i. 

The dry weight of the resin was calculated from the air-

dried weight and the moisture content of the resin. The mois­

ture content of the resin was determined by drying a weighed 

amount of the air-dried resin In an oven at 90-100° C. The 

resin was then placed under a vacuum for four to six hours. 

From the loss in weight, which reached a minimum after two 

dryings, the moisture content was calculated. This was de­

termined each time a series of equilibration studies were 
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carried out. The moisture content ranged from 5 to 10 per­

cent by weight. 

Knowledge of the time needed to reach equilibrium was re­

quired before the distribution coefficients could be accurately 

determined. It is known that equilibrium Is reached at a slow­

er rate in a mixed or nonaqueous solvent than In water. This 

information is also helpful In determining optimum flow rates 

in column operations. Equilibration time was measured by de­

termining the distribution coefficients, as described later, 

of copper(II) chloride in 18, 37, 55 > and 74 percent lsopropyl 

alcohol-i M hydrochloric acid vs. time. The times at which 

the distribution coefficients reached a maximum were < 10, 

< 10, 10, and 30 minutes, respectively. To insure equilibrium 

was reached, particularly when the mixture was above 80 percent 

organic by volume, more than ample time was allowed in the dis­

tribution coefficient determinations. 

The distribution coefficient should be independent of the 

absolute solute concentration. In order to meet this require­

ment the solute should occupy approximately 3 percent of the 

resin capacity or less. The capacity of the re-sin used in this 

work was known to be about 3.8 meq./g. However, the exact ad­

sorbing species is not known and this prevents calculation of 

the proper concentration of metal ion to use In the equilibra­

tion. To determine this concentration the distribution coef­

ficients of several metals [copper(II), manganese(II), and 
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nickel(II) chloride J were measured as a function of the 

metal Ion concentration while holding the solvent composition 

constant. Figure 2 illustrates the variance of copper ion in 

90 percent ethyl alcohol-0.3 H hydrochloric acid and nickel 

ion in 90 percent isopropyl alcohol-0.3 M hydrochloric acid. 

Any concentration on the horizontal part of the curve can be 

used. To further minimize any changes in the distribution co­

efficients, approximately the same metal ion concentration was 

used in all the determinations except in the constant hydro­

chloric acid-varying ethyl alcohol and constant acid and water-

mixed organic solvent studies. The concentration used was 

0.007 M ± 0.0005 in the former and 0.0042 H + 0.0004 in the 

latter two. 

A detailed procedure used for the distribution coefficient 

measurement is as follows: Approximately 1 gram of air-dried 

resin is accurately weighed Into a 125 ml. ground glass stop­

pered Srlenmeyer flask. Fifty ml. of the appropriate organic 

solvent-water-hydrochloric acid mixture and 4 ml. of the metal 

ion solution are then pipetted Into the flask. The flask Is 

stoppered and shaken on the Burrell shaker for 12 to 18 hours 

for organic solutions of 80 percent or less and 22 to 32 hours 

for those above 80 percent. (The temperature in this work was 

24+1° c.) After the equilibration period an aliquot of the 

liquid phase is removed. The excess acid and organic solvent 

are evaporated by mild heating and the analysis is completed 

by either a titrimetric or colorlmetrlc method, depending upon 
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Figure 2. Distribution coefficients of nickel(II) chloride 
In 90 percent iaopropyl alcohol-0.3 M hydro­
chloric acid and copper(II) chloride in 90 per­
cent ethyl alcohol-0.3 M hydrochloric acid vs. 
metal ion concentration 
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the concentration of the metal ion present. Since the com­

position of both the solvent and metal ion solution are known, 

the concentration of the various components in contact with 

the resin are then calculated assuming changes in volume due 

to mixing are negligible. 

Preparation of Columns 

A slurry of the resin, Dowex 1 X8, chloride form, 200 to 

400 mesh, In 95 percent ethyl alcohol-0.3 M hydrochloric acid 

Is prepared and stirred to equilibrate the resin with the sol­

vent mixture. The slurry is then poured into the glass col­

umn which contains 5-10 ml. of the alcohol-acid mixture until 

the desired height is reached. The liquid level is adjusted 

to be 1.5 to 2 cm. above the resin bed. Approximately 50 ml. 

of the acid-alcohol mixture is then passed through the column 

at a moderate flow rate. In this manner complete settling of 

the resin column is obtained. Also, the void space and solvent 

uptake of the resin is of the same composition as the eluting 

agent. Elution is continued until the liquid level is about 

l/l6 of an inch above the resin. The tip of the funnel is 

lowered to about one cm. above the resin bed. At this point 

the metal mixture, using either of the sampling techniques de­

scribed in the next section, is slowly transferred to the 

funnel reservoir. After rinsing the sample into the resin 

column with the 95 percent alcohol-acid mixture and adjusting 
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bed, a small portion of the eluting agent is added. The tip 

of the funnel is raised to about 2 cm. above the resin bed 

and the remaining eluting agent is added slowly so as not to 

disturb the resin. When the elution of the first metal Is 

complete the level Is adjusted to about l/l6 of an inch above 

the resin bed and the second eluting agent is slowly added. 

Subsequent elutlons are treated similarly. 

Sampling Technique 

Two sampling techniques were employed in the separation 

studies. The first technique involved pipetting of an ethyl 

alcohol-hydrochloric acid-metal chloride mixture. The mix­

ture was prepared by taking 10 ml. aliquots from solutions 

containing 18 mg. of metal ion/ml. (chloride solution) and 

evaporating the water mixture in a small beaker to near dry­

ness at a slow rate. The residue was then dissolved in 2.5 

ml. of concentrated hydrochloric acid and 2.5 ml. of water. 

This was transferred to a 100 ml. volumetric flask. The beak­

er was rinsed with absolute ethyl alcohol and this was added 

to the flask. The mixture was diluted to volume with absolute 

ethyl alcohol. This gave a solution of 0.3 M hydrochloric 

acid, 1.8 mg. of each metal ion/ml., and approximately 95-96 

percent ethyl alcohol. Suitable aliquots of this mixture were 

then transferred to the Ion exchange column. Similar solu­

tions were prepared of each metal ion and standardized. This 
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technique was employed only in 1:1, by weight, metal ion con­

centrations. It is, however, adaptable to different ratios. 

A disadvantage of this method is that volumetric errors may 

be encountered. This is possible because the volumetric glass 

ware is calibrated for water solutions and not alcoholic solu­

tions. 

The second technique avoided pipetting of alcohol solu­

tions. The metal ion mixture was prepared by taking suitable 

aliquots of the standardized 1.8 mg. metal ion/ml. chloride 

solutions and transferring them to a beaker. The solution was 

evaporated to near dryness at a slow rate. Five ml. of a 96 

percent ethyl alcohol-0.3 M hydrochloric acid mixture was add­

ed. After the residue dissolved, 5-10 minutes, the resulting 

solution was transferred to the ion exchange column. The 

beaker was rinsed with a solution of 95 percent ethyl alcohol-

0.3 M hydrochloric acid and this was also transferred to the 

column. A disadvantage of this technique is the necessity of 

rinsing the beaker thoroughly after transferring the sample. 

The tenacity of the alcoholic solution to the glass requires 

complete and careful rinsing so that excessive volumes of wash 

solution are not used. Also, in some cases, the residue will 

dissolve very slowly. This latter technique was used in the 

major portion of the separations reported here. 
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DISCUSSION OF DISTRIBUTION COEFFICIENT DATA 

The batch distribution coefficient can be altered by 

changing the composition of the solvent in three ways. In gen­

eral, as the concentration of the hydrochloric acid is in­

creased the distribution coefficient increases. Similarly, as 

the percent of organic solvent Is increased the distribution 

coefficient increases. The third method is to change the or­

ganic solvent. By taking advantage of these three routes a 

systematic approach to the distribution coefficient study was 

initiated with the ultimate goal being the application of these 

data to separations. 

Distribution coefficients for copper(II) chloride in 28, 

37, 55» 65, 74, 90, and 95 percent isopropyl alcohol with var-

ing hydrochloric acid concentration are given in Table 1 and 

plotted in Figure 3. This family of curves illustrates the 

increase in distribution coefficient as the hydrochloric acid 

concentration or isopropyl alcohol concentration Is increased. 

It is interesting to note that in aqueous solution copper(II) 

is retained by the resin beginning at about 2 M hydrochloric 

acid and reaches a maximum at about 6 M, Dv = 1, D = 2.2 and 

Dv = 10, D = 22, respectively (39)• Particularly striking is 

the comparison of these values to those found in 90 and 95 per­

cent isopropyl alcohol-0.01 to 0.2 M hydrochloric acid. This 

respective D range, 280-770 and 79>000-87,000, is also 
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striking in that an increase by a factor of about 100 occurs 

with a 5 percent increase in Isopropyl alcohol. 

Distribution coefficients were measured for a series of 

metal chlorides in 95> 90, 74, 65, and 55 percent isopropyl 

alcohol at varying concentrations of hydrochloric acid. The 

distribution coefficients measured for cobalt(II), manganese 

(II), nickel(II), and calcium(II) chlorides in 95 and 90 per­

cent isopropyl alcohol-0.01 to 0.2 M hydrochloric acid are 

given in Table 2 and Table 3 and plotted vs. hydrochloric acid 

concentration in Figure 4 and 5> respectively. The values 

found for uranyl(VI), cobalt(II), thorium(IV), dysprosium(III), 

calcium(II), and nickel(II) chlorides in 74 percent isopropyl 

alcohol at varying concentrations of hydrochloric acid are 

given in Table 4 and plotted vs. the acid concentration in 

Figure 6. Similarly, Table 5 and Figure 7 contains the dis­

tribution coefficient values found for cobalt(II), calcium(II), 

nickel(II), and thorlum(IV) chlorides in 65 percent isopropyl 

alcohol with varying hydrochloric acid concentrations. Table 

6 and 7 respectively, contains the data found for bismuth(III), 

cadmium(II), zinc(II), uranyl(VI), iron(III), cobalt(II), and 

manganese(II) chlorides (strongly adsorbed group) and chromium 

(III), vanadyl(IV), (sulfate), lanthanum(III), thorlum(IV), 

calcium(II), nickel(II) and zirconium(IV) chlorides (weakly 

adsorbed group) In 55 percent isopropyl alcohol at varying hy­

drochloric acid concentrations. These are plotted in Figure 8 

(strongly adsorbed group) and In Figure 9 (weakly adsorbed 
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group). Data previously presented for copper(II) chloride, 

Table 1 and Figure 3» are also included in these graphs for 

comparison purposes. 

The distribution curves of the strongly adsorbed metals 

(cobalt(II) and higher), except those in 90 and 95 percent iso­

propyl alcohol (Figure 4 and 5)> are very similar in shape to 

those found by Kraus in aqueous hydrochloric acid (39)• The 

principal difference is the enhanced adsorption or retention at 

lower acid concentrations which is dependent on the amount of 

organic solvent present. Considerable differences occur in the 

case of the weakly adsorbed group. In aqueous hydrochloric 

acid, calcium(II), nickel(II), thorium(IV), and rare earths 

(III) exhibit no adsorption even when the acid concentration 

is as high as 12 M. In 95 percent isopropyl alcohol-0.2 M 

hydrochloric acid the D values for nickel(II) and calcium(II) 

are about 100 and 60, while in 90 percent isopropyl alcohol-

0.2 M hydrochloric acid the values drop to 45 and 31, respec­

tively. Significant retention also occurs in 74, 65, and 55 

percent isopropyl alcohol, but to a lesser extent. Thorium 

(IV) and rare earths(III) also show significant retention hav­

ing D values of 17 and 10 at 2.4 H hydrochloric acid-74 percent 

isopropyl alcohol. Manganese(II), chromlum(III), and vanadyl 

(IV) exhibit different properties in 55 percent isopropyl al­

cohol than in aqueous hydrochloric acid. In the latter solution 

manganese(II) starts to show slight adsorption at about 7-8 M 

acid and reaches a maximum D value of about 5 at approximately 
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10 M hydrochloric acid. In the alcoholic-acid solution the 

D value reaches a maximum of 27 at 4.5 M hydrochloric acid and 

is still increasing. (Maximum points were not reached in sev­

eral instances because the volume requirements of the mixtures 

prevented further addition of concentrated hydrochloric acid. 

However, higher concentrations could probably be attained by 

dissolving gaseous hydrogen chloride in the mixture.) Chro­

mium (III) and vanadyl(IV) are classified in the slight adsorp­

tion group by Kraus (39)» i.e., in 12 M hydrochloric acid 0.6 

— D - 2.2. In the 55 percent isopropyl alcoholic-acid mixture 

slight retention by the resin starts to occur at about 1.5 M 

acid and reaches D values of about 4 and 6, respectively. Of 

the metals studied only zirconium(IV) shows less adsorption in 

the alcoholic medium. However, the adsorption that does occur 

starts at a lower hydrochloric acid concentration, 2 M vs. 7 H 

in water. Maximum adsorption for zirconium(IV) (see Figure 9) 

could not be determined because of its hydrolytlc or solubility 

properties, with precipitation occurring at 3.5 M hydrochloric 

acid. 

Distribution coefficient data are given in Table 8 and 

plotted in Figure 10 for the solvent system 96 percent iso­

propyl alcohol-0.0005 to 0.01 M hydrochloric acid for copper 

(II), cobalt(II), nickel(II), manganese(II), and calcium(II) 

ions. The perchlorate salts were used so that the only chloride 

present would be that associated with the resin and the chlorine 

from the hydrochloric acid in the solvent. It will be noticed 
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that the retention falls slowly, implying that no chloride ion 

in the form of hydrochloric acid need be present. However, the 

presence of perchlorate anion affects the retention as seen by 

the comparison of Figure 10 and Figure 5« This decrease by a 

factor of about 10 is due to the greater affinity which the 

resin has for the perchlorate anion and probably follows the 

desorption process illustrated in the following equation: 

RCl*MCln + CIO4 RCIO4 + [ci~ + MCln J  ( 7 )  

R = Resin 

In this reaction the metal being retained either by ion pair 

formation or as a negatively charged chloro-complex is dis­

placed by the perchlorate anion yielding the ion pair and chlo­

ride anion or a negatively charged chloro-complex (50). 

The perchlorate desorption effect was further illustrated 

by the determination of the distribution coefficients for the 

same metals [copper(II), cobalt(II), nickel(II), manganese(II), 

and calcium(Il)J as perchlorate salts in 97 percent isopropyl 

alcohol-0.02 to 0.2 M perchloric acid. These data are given in 

Table 9 and plotted in Figure 11. The only chloride present is 

that associated with the resin. If a complete perchlorate sys­

tem is used no adsorption occurs. This was found when copper 

(II), manganese(II), and nickel(II) perchlorate were equilib­

rated with perchlorate form resin in 95 percent isopropyl al-

cohol-0.05 to 0.2 M perchloric acid. 

The effect of the type of organic solvent was determined. 

Table 10 contains the D values found for copper(II) chloride 
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in ?4 percent ethyl alcohol, -acetone, -dloxane, and -ethylene 

glycol with varying hydrochloric acid concentration. Table 11 

contains the data found for constant 1 M hydrochloric acid with 

varying percent of organic solvent. The data are plotted in 

Figure 12a and 12b, respectively. The previously graphed data 

for copper(II) in isopropyl alcohol (see Table 1 and Figure 3) 

are also included for comparison. Enhanced adsorption in Fig­

ure 12b follows the order: dloxane > acetone > isopropyl alco­

hol = ethyl alcohol. The order of the dielectric constants of 

the solvents is: ethyl alcohol > acetone > isopropyl alcohol"^ 

dloxane (124). Simple correlations with the dielectric con­

stant are not readily apparent. This Is probably due to the 

different solvation properties of the solvents and the neces­

sity of considering the effect of hydrochloric acid and water 

on the dielectric constant. In addition, the values obtained 

in 1 M hydrochloric acld-?4 percent acetone or dloxane as well 

as higher concentrations of the acid are not very accurate. 

Condensation reactions in the acetone solutions and some im-

mlsclbllity in the dloxane solutions were apparent. 

To Illustrate further the effects of the type of solvent, 

distribution coefficients In 96 percent methyl alcohol, -ethyl 

alcohol, -Isopropyl alcohol, -acetone, and -dloxane at 0.01 to 

0.2 M hydrochloric acid for copper(II), cobalt(II), manganese 

(II), calcium(II), and nickel(II) as perchlorate salts were de­

termined and are summarized in Table 12. The distribution coef­

ficients are plotted against hydrochloric acid concentration 
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in Figures 13 to 22. Figures 13 to 17 contain the curves 

found for the metal ions in each solvent while Figures 18 to 

22 contain the different solvent curves for each metal ion. 

The high retention that the resin exhibits for calcium(II), 

nickel(II), and manganese(II) suggests adsorption of ion pairs 

or of undissociated molecules. This would be promoted in the 

solvents of lower dielectric constant. (In general, the ioni­

zing power of a solvent is higher for the one having a higher 

dielectric constant.) However, evidence of chloro-complexes 

of the three metal ions have been reported (125). These in 

general are very weak and are probably mono-chloro-complexes. 

This would tend to imply that by addition of a solvent of low 

polarity, neutral molecules or ion pairs would be the dominant 

species. In the case of copper(II) and cobalt(II), the major 

species are probably negatively charged chloro-complexes. 

This is easily seen by the sharp color changes that occur upon 

addition of an organic solvent to a chloride solution of the 

metal ions. (The copper(II) solution turns to a yellow-brown 

color and the cobalt(II) solution to a brilliant blue color.) 

Comparison of absorption spectra illustrates this. In Figure 

23 the absorption spectra of cobalt(II) is given for the con­

ditions: aqueous-increasing hydrochloric acid concentration 

and constant hydrochloric acid concentration-increasing percent 

ethyl alcohol. 

The strengths of several of the transition metal chloro-

complexes have been measured in mixed solvents containing 
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chloride ions (125). In general, these show enhancement in 

complex strength over that found in aqueous chloride solu­

tions. The presence of the organic solvent appears to favor 

the dehydration of the aquated metal ions and consequently 

favors the formation of negatively charged complexes. This is 

conviently expressed by the following reactions for copper(II): 
+2 _ +1 

Cu( H20)jL{. + 01 CuCKHgO)^ + H2O (8) 

GUC1(H20)31 + C1~Ï=± CUCI2(H2O)2° + H2O ( 9 )  

CUC12(H20)2° + Cl 5=i CuCl^(H2O)^ + H20 (10) 
-1 - ? 

CuCl3(H20)i + Cl CUCI4 + H20 (11) 

The adsorption of one of these species can take place. This 

can occur either by adsorption of negatively charged chloro-

complexes [see reaction (12)] or by adsorption of a neutral 

complex or ion pair [see reaction (13)] 

n-2 R-Cl + (CuCln)2~n̂ =ï Rn_2(CuCln)2"n + n-2 Cl" (12) 

R= Resin, n = 3 or 4. 

R-Cl + CuCl2s=SR-Cl(CuCl2) (13) 

Furthermore the negatively charged chloro-complexes can react 

with the hydrogen ions [see reactions (14-16) j to form acidic 

chloro-complexes. 

CuClJ + HCuCl3 (14) 

CuCl4 + H+ ̂  HCUCI4 ( 15 ) 

HCuClZf + H2CuCl4 (lé) 

The dissociation of these acidic chloro-complexes would be 

controlled by the ionizing power and leveling effect of the 
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organic solvent that is present. The adsorption of any of 

these acidic species could be similar to an extraction process. 

Many oxygenated solvents have been used for the extraction of 

metal chloro-complexes from hydrochloric acid solution (126). 

In this case, the uptake of the organic oxygenated solvent by 

the resin would serve as a stationary extracting agent. 

To test the possibility of adsorption or extraction of the 

acidic species, solutions containing 0.005 M copper(II) chloride 

and 0.01 M hydrochloric acid in 95 percent methyl alcohol, 

ethyl alcohol, and isopropyl alcohol were passed continuously 

through columns of resin. The effluent was collected up to 

the copper(II) break through point and titrated with standard 

base. No significant decrease in acidity was found as would be 

indicated by the possible extraction or adsorption of the acidic 

copper chloro-complex. However, this does not rule out the ex­

traction process. The mechanism of the process may be an in­

itial extraction of a neutral species as illustrated in reac­

tion (17). 

R-Cl (Solvent) + CuClg ==% R^C1( Solvent-CuCl2) (17) 

A complexing reaction could then take place which would yield 

a product as illustrated in reaction (13). In the case of the 

non chloro-complexing metal ions, the process would stop with 

a product similar to that in reaction (17). 

Unfortunately, the exact nature of the retained species is 

difficult to ascertain. This is readily apparent in light of 

the previous discussion and the contrary views of Katzin and 
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G-ebert (89) and Davie s and Owen (86) on adsorption in acetone 

solution. Undoubtedly, the dielectric constant which reflects 

many of a solvents properties is an important factor in the 

uptake of metal ions by the resin. However, a theory must be 

developed individually for each solvent because the properties 

are often specific for certain solvents. 

The distribution coefficient curves In high percent ethyl 

alcohol with low hydrochloric acid concentration (see Figure 

14) are similar to the aqueous hydrochloric acid curves In that 

calcium(II) and nickel(II) are only slightly retained. In con­

trast, manganese(II), cobalt(II), and copper(II) show enhanced 

retention. It appeared that an elution scheme could be based 

on changes in percent ethyl alcohol while holding the hydro­

chloric acid concentration constant. Distribution coefficients 

for cadmium(II), zinc(II), bismuth(III), uranyl(VI), iron(III), 

eopper(II), cobalt(II), manganese(II), thorium(IV), dysprosium 

(III), lanthanum(III), vanadyl(IV) (sulfate), chromium(III), 

nickel(II), and calcium(II) chlorides in constant 0.3 M hydro­

chloric acid with varying percent of ethyl alcohol are given 

in Table 13 and 14, strongly adsorbed and weakly adsorbed metal 

ions, respectively. The values are plotted against percent 

ethyl alcohol in Figure 24 for the strongly adsorbed metal ions 

and In Figure 25 for the weakly adsorbed metal ions. As ex­

pected, the enhanced adsorption decreases with a decrease in 

the ethyl alcohol concentration. 
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Of particular interest is the high thorium(IV) and dys-

prosium(III) adsorption. It appeared that by a combination of 

methyl and ethyl alcohol intermediate adsorption might occur 

which would yield more ideal conditions for separations. A 

comparison of the distribution coefficients in 96 percent 

methyl alcohol and ethyl alcohol with 0.2 M hydrochloric acid 

for nickel(II) and manganese(II) (see Figure 13 and 14) seemed 

to bear this out. Distribution coefficients measured for cal-

cium(II), nickel(II), dysprosium(III), thorium(III), and scan-

dium(III) in 0.2 M hydrochloric acid with varying amounts of 

methyl and ethyl alcohol totaling 96 percent are given in Table 

15 and plotted in Figure 26. Similar measurements were made in 

methyl and isopropyl alcohol mixtures. These data are found In 

Table 16 and plotted in Figure 27. 

For the separation of several metals conditions should be 

selected such that the distribution coefficients of all but one 

element are high. The latter element should have a distribution 

coefficient In the neighborhood of unity. In this manner each 

element may be removed within a few column volumes in sharp 

bands. It is evident from Figures 8 and 9» 24 and 25» and 26 

that separation of a large number of elements, either in groups 

or individually, is feasible by the use of anion exchange resins 

and hydrochloric acid in mixed solvents. The application of the 

distribution coefficient data to separations was the next step 

and is discussed in the following section. 
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Table 1. Distribution coefficients of copper(II) (chloride 
salt) in water, isopropyl alcohol, and hydro­
chloric acid mixtures 

(HC1) 
P e r c e n t a 1 

0
 

d
 
0
 
0
 1 

M 95 90 74 65 55 37 28 

0.01 8,970 282 

0.035 8,090 353 

0.05 2.5 

0.07 8, o4o 448 

0.1 8,370 530 6.4 0.6 

0.2 8,710 776 

o.5 23.3 6.4 1.2 

1.0 63.0 18.8 5.7 0.8 0.3 

1.5 131 37.1 13.9 

2.0 224 66.3 27.5 5.7 2.4 

2.4 257 

2.5 107 44.2 

3.0 135 76.8 17.4 7.9 

3.5 149 84.7 

4. 0  93.4 35> 14.3 

4.5 98.1 

5.0 47.3 31.7 
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Figure 3. Distribution coefficients of oopper(II) chloride in various concentra­
tions of isopropyl alcohol vs. hydrochloric acid concentration 
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Table 2. Distribution coefficients of metal ions (chloride 
salts) in 95 percent isopropyl alcohol with 
varying hydrochloric acid concentration 

M e t a l  i o n  
(HCl) 

M Co(II) Mn(II) Ni(II) Ca(II) 

0.01 7,140 897 55.5 88.4 

0.035 8,320 1,230 61.1 100 

0.07 10,100 974 66.3 99.2 

0.1 12,600 1,370 66.4 112 

0.2 10,100 2,520 63.6 109 

Table 3« Distribution coefficients of metal ions (chloride 
salts) in 90 percent isopropyl alcohol with 
varying hydrochloric acid concentration 

(HCl) M e t a l  l o n  

M Co(II) Mn(II) Ni(II) Ca(II) 

°-01 78.9 24.7 19.2 24.2 

°-°35 117 32.8 23.6 29.4 

°.°7 161 39.4 25.9 34.0 

0-1 211 45.9 27.1 38.9 

0.2 430 67.8 31.3 45.4 
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Figure 4. Distribution coefficients of metal ohloridea in 95 percent isopropyl 
alcohol vs. hydrochloric aoid concentration 
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Figure 5. Distribution coefficients of metal chlorides 
in 90 percent isopropyl alcohol vs. hydro­
chloric acid concentration 
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Table 4. Distribution coefficients of metal ions (chloride 
salts) in 74 percent isopropyl alcohol with 
varying hydrochloric acid concentration 

(HCl) 
M 

M e t a 1 i o n  (HCl) 
M 

U02(II) Co (II) Th(IV) Dy(III) Ni(II) Ca(II 

0.05 6.0 0.3 0.0 0.2 0.3 0.0 

0.1 10.1 0.9 0.2 0.3 0.6 0.0 

0.5 77.0 7.2 3.9 5.0 2.8 3.1 

1.0 44l 14.8 8.5 3-9 4.7 4.8 

1.5 1,100 48.4 10.7 6.5 5.1 6.6 

2.0 2,510 102 12.2 8.9 6.0 7.9 

2.4 6.190 346 18.8 10.9 6.5 8.3 

Table 5« Distribution coefficients of metal ions (chloride 
salts) in 65 percent isopropyl alcohol with 
varying hydrochloric acid concentration 

(HCl) 
M 

M e t a l  i o n  (HCl) 
M Co(II) Th(IV) Ca(II) Ni(II) 

0.1 0.0 0.0 

0.5 1.1 0.0 

1.0 3.1 1.1 1.3 1.3 

1.5 6.1 2.1 2.1 2.4 

2.0 15.7 3.0 2.7 2.0 

2.5 51.2 2.8 2.9 2.4 

3.0 134 5.0 3.0 2.5 

3.5 228 7.1 3.0 2.5 
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Figure 6. Distribution coefficients of metal chlorides 
in 74 percent isopropyl alcohol vs. hydro­
chloric acid concentration 
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Figure 7. Distribution coefficients of metal chlorides 
In 65 percent Isopropyl alcohol vs. hydro­
chloric acid concentration 
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Table 6. Distribution coefficients of metal Ions (chloride salts) In 55 percent 
Isopropyl alcohol with varying hydrochloric acid concentration. Strongly 
adsorbed group 

M e t a l  i o n  

M Bi(IIl) Cd(II) Zn(II) U02(II) Fe(III) Co(II) Mn(Il) 

0.01 2,070 139 0.0 

0.05 12,200 3,590 310 0.9 0.0 

0.1 9,710 5,060 467 1.4 0.0 

0.5 3,860 2,780 691 7.3 4.9 0.0 

1.0 4,120 1,290 606 26.4 20.7 0.6 1.1 

1.5 1,800 71-4 52.3 1.2 1.6 

2.0 1,360 563 443 204 104 3.6 1.9 

2.5 494 159 9.4 2.4 

3.0 493 335 359 882 187 26.4 4.3 

3.5 62.3 7.7 

4.0 477 224 268 2,310 224 109 14.7 

4.5 222 197 l6l 27.4 
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Figure 8. Distribution coefficients of metal chlorides 
in 55 percent isopropyl alcohol vs. hydrochloric 
acid concentration. Strongly adsorbed group 
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Table 7. Distribution coefficients of metal Ions (chloride salts) In 55 percent 
Isopropyl alcohol with varying hydrochloric add concentration. Weakly 
adsorbed group 

(HCl) 
M 

M e t a 1 1 o n (HCl) 
M Cr(III) V0(II) Th(IV) La(IIl) ZrO(II) Nl(II) Ca(Il) 

0.5 0.8 0.4 0.0 0.0 0.0 

1.0 1.2 0.8 0.0 0.7 0.0 0.2 

1.5 2.0 0.9 0.5 1.0 0.5 0.5 0.0 

2.0 1.8 0.8 0.6 1.3 1.3 0.3 

2.5 2.0 1.3 0.3 1.0 0.8 0.6 

3.0 2.0 3.4 l.i 1.6 1.6 0.8 0.6 

3.5 1.6 3.3 1.6 a* 0.8 0.2 

4.0 3.5 3.8 1.5 1.7 0.9 0.3 

4.5 6.4 4.5 2.8 1.7 a* 0.8 0.6 

"Precipitation occurred 
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Figure 9. Distribution coefficients of metal chlorides in 55 percent isopropyl 
alcohol vs. hydrochloric acid concentration. Weakly adsorbed group 
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Table 8. Distribution coefficients of metal ions (per-
chlorate salts) in 96 percent isopropyl alcohol 
with low hydrochloric acid concentration 

(HCl) 
M 

M e t a 1 1 0 n (HCl) 
M Cu(II) Co(II) Mn(II) Ni(II) Ca(II) 

0.0005 2,560 1,680 85.8 12.3 13.6 

0.001 2,34o 944 26.2 13.1 13.7 

0.005 2,910 1,270 92.4 16.1 16.2 

0.01 3,670 1,420 96.0 15.4 17.4 

Table 9» Distribution coefficients of metal Ions (per-
chlorate salts) in 97 percent isopropyl alcohol 
with varying perchloric acid concentration 

(HCIO4) 
M 

M e t a 1 1 0 n (HCIO4) 
M Cu(II) Co(XI) Mil (II) Ni(II) Ca(II) 

0.02 197 50.4 41.7 1.8 1.8 

0.035 91.8 31.7 14.6 1.4 0.1 

0.07 43.1 22.5 7.3 0.0 0.2 

0.1 28.1 13.9 3.9 0.0 0.0 

0.2 15.3 10.4 1.3 0.0 0.0 
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Distribution coefficients of metal perchlorates 
In 96 percent Isopropyl alcohol vs. hydro­
chloric acid concentration 
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Figure 11. Distribution ooeffioients of metal perchlorates In 97 percent 
isopropyl alcohol vs. perchloric acid concentration 
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Table 10. Distribution coefficients of copper(II) (chloride 
salt) in 74 percent organic solvent with varying 
hydrochloric acid concentration 

(HCl) S 0 1 v e n t 
M athyi 

alcohol 
Acetone Dloxane Ethylene 

glycol 

0.05 1.2 11.9 

0.1 4.5 17.2 7.9 

0.5 21.6 50.1 17.2 

1.0 64.1 72.5 42.2 2.2 

1.5 117 88.8 50.2 

2.0 185 117 54.7 13.8 

Table 11. Distribution coefficients of copper(II) (chloride 
salt) in 1.0 molar hydrochloric acid with varying 
percent of organic solvent 

S 0 1 v e n t 
Solvent 
% 

Ethyl 
alcohol Acetons Dloxane 

18 0.4 0.1 2.0 

37 1.7 2.0 15.6 

55 6.2 16.9 29.6 

74 64.1 72.5 42.2 
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Figure 12a. Distribution coefficients of copper(II) ohlorlde In percent 
organic solvent vs. hydrochloric acid concentration 
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Figure 12b. Distribution coefficients of copper(II) 
chloride in 1 M hydrochloric acid vs. 
percent of organic solvent 
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Table 12. Distribution coefficients of metal Ions (per-
chlorate salts) In 96 percent organic solvent 
with varying hydrochloric acid concentration 

M e t a l  i o n  

M Gu(II) Go(II) i Mn(II) Ca(II) Ni(II) 

Methyl alcohol 

0.01 58.2 8. 0 31.0 0.0 0.0 
0.05 104 23. 2 9.2 0.0 0.0 
0.1 135 42. 2 24.4 0.0 0.0 
0.2 213 78. 9 27.1 0.0 0.0 

Ethyl alcohol 

0.01 1,260 246 71.0 0.2 0.7 
0.05 1,930 772 122 0.6 1.1 
0.1 2.530 1,790 170 0.9 1.4 
0.2 3,440 2,260 226 1.0 1.3 

Isopropyl alcohol 

0.01 8,970 1,420 96.0 17.4 15.4 
0.035 8,090 1,490 118 20.0 18.0 
0.07 8,040 6,900 127 22.4 18.4 
0.1 8,370 6,940 114 23.7 19.2 
0.2 8,710 2,070 117 20.3 20.5 

Acetone 

0.01 7,130 305 522 
0.05 3,700 1,180 1,590 
0.1 1,480 843 1,080 
0.2 720 338 501 

Dloxane 

0.01 301 1,240 394 167 
0.05 239 1,160 206 97.8 
0.1 226 1,030 102 55-6 
0.2 203 537 158 38.6 
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Figure 13. Distribution coefficients of metal perchlorates in 96 percent methyl 
alcohol vs. hydrochloric acid concentration 
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Figure 14. Distribution coefficients of metal perchlorates in 96 percent 
ethyl alcohol vs. hydrochloric acid concentration 
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Figure 15. Distribution coefficients of metal perchlorates 
in 96 percent isopropyl alcohol vs. hydro­
chloric acid concentration 
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Figure 16. Distribution coefficients of metal perchlorates in 96 percent 
acetone vs. hydrochloric acid concentration 
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Figure 17. Distribution coefficients of metal perchlorates1 in $6 pèrcent 
dloxane vs. hydrochloric acid concentration 
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Figure 18. Distribution ooefflolents of oopper(II) perohlorate In 96 percent 
organic solvent vs. hydrochloric acid concentration 
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Figure 19. Distribution ooefflolents of oobalt(II) perohlorate in 96 percent 
organic solvent vs. hydrochloric acid concentration 
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Figure 20. Distribution coefficients of manganese(II) perohlorate in 96 percent 
organic solvent vs. hydrochloric acid concentration 
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Figure 21. Distribution coefficients of oalclum(II) per­
ohlorate In $6 percent organic solvent vs. 
hydrochloric acid concentration 
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Figure 22, Distribution coefficients of nickel(II) per­
ohlorate in 96 percent organic solvent vs. 
hydrochloric acid concentration 
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Figure 23. Absorption speotra of oobalt(II) chloride in 0.3 M hydrochloric acid 
with varying percent of ethyl alcohol (right figure) and in aqueous 
hydrochloric acid (left figure). One cm. cell and metal ion con­
centration of l;l6 X 10-3 M 
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Distribution ooeffiolents of metal ions (chloride salts) in 0.3 molar 
hydrochloric acid with varying percent of ethyl alcohol. Strongly 
adsorbed group 

M e t a l  I o n  

Bi(III) Od(II) Zn(II) U02(II) Cu(II) Co(II) Fe(III) Mn(II) 

1,860 502 

905 3,190 589 0.0 

6,620 4,950 908 0.4 0.4 

4,420 5,350 636 6.1 0.3 0.0 4.2 0 

.2,000 10,700 1,720 19.1 9.9 0.1 17.4 0 

5,860 1,980 57.8 27.0 0.3 55.0 1 

5,110 13,000 4,190 272 96.5 16.4 142 3 

939 289 75-3 286 9 

7,650 32,300 19,300 6,670 1,290 796 343 50 

64,500 38,900 3,830 1,370 554 405 

504 67,300 85,700 7,240 6,767 699 1,950 

24,500 969 1,950 
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Figure 24. Distribution coefficients of metal chlorides in 
0.3 M hydrochloric acid vs. percent of ethyl 
alcohol. Strongly adsorbed group 
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Distribution coefficients of metal ions (chloride salts) in 0.3 molar 
hydrochloric acid with varying percent of ethyl alcohol. Weakly 
adsorbed group 

M e t a l  i o n  
Th(IV) Dy(IIl) La(IIl) VO(II) Or(III) Ca(Il) Ni(II) 

0.0 0.0 0.0 0.0 0.0 

0.8 0.2 0.5 0.0 0.4 0.2 

1.7 1.1 1.6 0.0 0.7 1.3 0.8 

2.9 3.4 3.5 0.1 0.9 2.6 1.6 

8.9 6.0 7.4 0.0 4.0 2.5 

17.6 13.0 15.5 0.0 3.7 5.6 3.2 

65.7 16.1 22.1 2.8 6.8 5.4 3.1 

38.1 16.5 21.4 3.6 2.6 4.1 3.8 

92.6 22.9 19.8 5.6 1.1 1.5 3.3 
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Figure 25. Distribution coefficients of metal chlorides 
in 0.3 M hydrochloric acid vs. percent of 
ethyl alcohol. Weakly adsorbed group 
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Table 15. Distribution coefficients of metal Ions (chloride salts) In 0.2 molar 
hydrochloric acid with varying amounts of methyl and ethyl alcohol 
totaling 96 percent 

Percent Percent M e t a l  I o n  
methyl 
alcohol 

ethyl 
alcohol 

Ni(II) Ca(II) Dy(III) Th(IV) 8o(IIl) 

0 96 3.4 2.8 

0
 

1—1 C
M

 

92.5 

10 86 1.3 1.2 13.6 58.7 11.1 

29 6? 0.2 0.1 4.0 29.9 5.4 

48 48 0.0 0.0 1.1 12.8 2.5 

6? 29 0.0 0.0 0.3 6.1 1.5 

86 10 0.0 0.0 0.0 2.9 0.5 

96 0 0.0 0.0 0.0 2.1 0.5 
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Figure 26. Distribution coefficients of metal ohlorides In 0.2 M hydroohlorio 
acid vs. mixed methyl and ethyl alcohol totaling 96 percent 
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Table 16. Distribution coefficients of metal Ions (chloride salts) In 0.2 molar 
hydrochloric acid with varying amounts of methyl and Isopropyl alcohol 
totaling 96 percent 

Percent 
methyl 

alcohol 

Percent 
Isopropyl 
alcohol 

M e t a 1 1 0 n Percent 
methyl 

alcohol 

Percent 
Isopropyl 
alcohol Nl(II) Ca(II) Dy(III) Th(IV) Sc(III) 

0 96 64.0 110 

14 82 22.0 29.8 20.3 148 48.5 

34 62 3.2 18.1 73.4 21.0 

48 48 0.8 1.0 8.2 50.6 10.1 

62 34 0.4 0.2 0.3 17.3 4.6 

77 19 0.3 0.0 0.2 9.4 1.8 

86 10 0.2 0.1 3.5 1.0 

91 5 0.1 0.0 0.0 2.6 0.9 

96 0 0.0 0.0 0.0 2.1 0.5 

S 
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Figure 27. Distribution ooeffiolents of metal ohlorides in 0.2 M hydroohlorio 
aoid vs. mixed methyl and isopropyl aloohol totaling 96 percent 
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SEPARATIONS 

The selection of column operating conditions is often a 

matter of guesswork and usually results in over separation, 

thus taking up mare time than is necessary. Cornish (7*0 de­

veloped a practical application of chromatographic theory to 

analytical separations in ion exchange. In the elution meth­

od the species to be separated are adsorbed from a small vol­

ume to form a narrow band at the top of a column. Upon elu­

tion the bands will move down the column separating in ac­

cordance with their respective distribution coefficients. A 

typical result which shows the concentration of each species 

leaving the column 4s illustrated in Figure 28. In this Fig­

ure the symbols are defined as follows: 

D = Distribution coefficient 

V = Residual volume of liquid in column before elution 

= Volume required to elute to peak 1 

V"2 = Volume required to elute to peak 2 

til = Equivalents of solute 1 

Q2 = Equivalents of solute 2 

Ami - Equivalents of m% in solute 2 fraction 

A m2 = Equivalents of m2 in solute fraction 

a = D + 1 

V = Width of the peak at 0.368 of the peak height 
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EFFLUENT SPLIT INTO TWO PARTS 
SO THAT ASj-= Amg « -

Am 
Am; 

VOLUME 
Typical elution curves for the separation of solute 1 and solute 2 
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The cross-contamination between the two peaks depends on (l) 

the volume between the peak maxima, and (2) the shape and 

width of each peak. These two factors are almost completely 

independent and thus can be considered separately. 

The volume required to elute a solute is governed by 

the rate at which the solute band moves down the column, and 

this in turn depends on the distribution of the solute be­

tween the resin and the elutlng solution. This distribution 

is determined, among other factors, by the equilibrium dis­

tribution coefficient (see previous section for discussion of 

distribution coefficient). An increase In the ratio of Vg to 

Vi or of the ratio of the distribution coefficients gives 

rise to greater separation of the species. This ratio or 

separation factor, oi , is the most important factor in elu­

tion chromatography. 

Symmetrical peaks are desirable because any extensive 

trailing edges increases the cross-contamination between 

neighboring peaks. To achieve this Gaussian elution curve, 

column loading must be In the order of 50 mg. per sq. cm. or 

less. The width of the eluted peak is related to the number 

of theoretical plates, N, by the following equation 

N = 8(V + Vn)2 = _L_ (18) 

7 b 

where W is the width of the peak at O.368 of the peak height, 

L is the length of the resin bed, h is the height equivalent 
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to a theoretical plate and V and Vn (nth peak) are the vol­

umes as designated previously. The height equivalent to a 

theoretical plate is that length of column from which the 

solution leaving the exit end Is in equilibrium with the 

resin at the entrance end. The smaller the height the bet­

ter the separation as each peak becomes narrower and less 

overlap occurs. 

In practice, the separation factor is usually known 

rather than the elution curves. A problem arises in selec­

tion of the proper column parameters such as resin size, 

flow rate, and length of column. Cornish used previously 

published data to correlate all of these parameters in such 

a manner that by a few simple calculations and graphical in­

terpretation this problem is greatly simplified. The cross-

contamination, is given by the ratio of A m2 to m^ (see 

Figure 28 and terminology). 9[ la calculated on the assump­

tion that the effluent from the column is divided into two 

portions to give products of equal purity, i.e. ̂ m2 =4*1 . 
ml m2 

The percent of purity of each solute Is then 100(1 - 71). 

The ratio of (Dg + 1) to (D^ + 1) (or ag/ a%) is related to 

the number of theoretical plates, graphically, by the para­

meter ^m2 + m|). Similarly, an empirical relationship be-

tween the height equivalent to a theoretical plate and par­

ticle size of the resin was done graphically by a family of 
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curves. These curves are defined by different flow rates of 

the eluting agent. 

All of the calculations are extremely simple. The col­

umn diameter is determined by the total mass to be separated 

and the 50 mg. per sq. cm. loading rule. The flow rate and 

resin particle size are selected, and from this the height 

equivalent to a theoretical plate is determined. From the 

required purity desired and calculations of the &2/al ratio 

and % parameter, the number of plates, N, is determined. 

Multiplication of these two terms then yields the length of 

resin necessary for the separation. 

In applying these selected conditions three rules must 

be kept in mind. (1) The height equivalent to a theoretical 

plate obtained from the curves may differ from practical re­

sults by a factor of up to 3. This is caused by unknown var­

iables such as non-uniform shape of the resin particles un-

uniform crosslinking or inefficient column packing. (2) The 

curves serve essentially as a guide; the actual column must 

be slightly over designed to ensure adequate separation. (3) 

The curves may be considerably in error when applied to anion 

resins if used in strong acid. 

Of particular importance to this work are rules (1) and 

(3). Fortunately, Cornish compared the height equivalent to 

a theoretical plate found by experiment to that found by cal­

culation for a number of separations using anion exchange 
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resins ( also for cation resins). From this, an empirical 

factor can be Introduced to correct, roughly, the calculated 

height. 

This method served as a useful guide for the selection 

of flow rate and column dimensions in the separations to be 

described. Rigid application was not followed, principally 

because most of the separations have very favorable separa­

tion factors. Therefore, in most cases, the column of resin 

was moderately overdesigned. In addition to the calculations, 

other factors, which are discussed in the following paragraphs, 

were also considered in the selection of the column parameters. 

The extent of cross-linkage was considered in selecting 

the proper resin. This is very important as it controls the 

swelling properties of the resin. In general, as the cross-

linking Increases the swelling decreases. It must also be 

remembered, however, that the exchange equilibrium decreases 

with increased cross-linkage. Thus selection of a resin with 

optlmlum cross-linking is important. It was expected that 

some contraction or expansion of the resin columns would occur 

as the eluting agents were changed. This is because these 

changes usually involve a significant change in the water con­

tent as well as the hydrochloric acid content. In practice, 

expansion is encountered much more than contraction. This ex­

pansion is undoubtedly due to the resin absorbing the more 

polar species, water and hydrochloric acid, because the eluting 
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sequence is towards a water-hydrochloric acid eluting system. 

With these facts in mind the 8 percent cross-linked resin was 

selected. 

The distribution coefficients were determined using 

Dowex 1 X8, chloride form, 100 to 200 mesh resin. This resin 

was also used in the preliminary separation studies. It was 

found that the bands of metal ions on the column were spread 

out. This spreading, however, was not large enough to pre­

vent the use of the 100 to 200 mesh resin for separations. 

But, it would require longer columns of resin and consequently, 

larger volumes of eluting agent. Shortening of the bands can 

be accomplished by using a finer mesh resin as these will reach 

equilibrium more rapidly. For this reason the 200 to 400 mesh 

resin was selected for the separations. 

Separations are achieved by adsorption of the elements on 

the resin at low hydrochloric acid concentration and high ethyl 

alcohol concentration, followed by elution with solutions of 

progressively lower hydrochloric acid concentration in con­

stant water-organic solvent compostions or by progressively 

lower ethyl alcohol concentrations with constant hydrochloric 

acid concentration. Exchange was carried out under conditions 

whereby the distribution coefficients are maximal and condi­

tions for removal were selected so that the distribution co­

efficient of one element at a time became one or close to one, 

while those for the other elements remained as high as poss-, 

ible. Using these principles, innumerable separations may be 
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devised from Figure 8 and 9» 24 and 25, and 26. Small columns 

and small volumes of eluent will usually be sufficient for the 

separations. 

Initial separations were by the elution scheme suggested 

in Figure 24 and 25 (constant hydrochloric acid concentration 

with varying percent of ethyl alcohol). Column parameters 

were calculated according to the previously described method 

of Cornish. The examples in Table 17 illustrate the elution 

order, quantity of eluent needed, and separation and recovery 

for synthetic methai ion mixtures. The sample was introduced 

by the pipetting technique. In all cases Dowex 1 X8, 200 to 

400 mesh, chloride form resin was used with a flow rate of ap­

proximately 0.25 ml. per minute. The column dimensions and 

sample sizes are given in parentheses in the Table. Elution 

of the metal ion mixtures, which are approximately 1:1 ratios 

by weight, are given in their respective elution order. Also 

included is the volume of wash solution that was collected 

with the first eluted metal ion. 

Several separations are not possible using this elution 

scheme. Uranium(VI), copper(II), and iron(III) can be sep­

arated only as a group. Nickel(II), calcium(II), vanadium(IV), 

and chromlum(III) can also only be separated as a group. 

Manganese(II) can be separated from this latter group but the 

separation is only moderately successful. The separation is 

done with a 95 percent ethyl alcohol-0.3 M hydrochloric acid 
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eluting agent. It Is seen In the distribution coefficient 

curves (Figure 24 and 25) that this latter ^nickel(II) etc.] 

group has distribution values of about 4 to 5 in this eluting 

medium. Considerable tailing occurs which then necessitates 

excessive amounts of eluting agent (see Nl(II)-Mn(II) sep­

aration in Table 17). Also» manganese(II) cannot be sepa­

rated from cobalt(II). Another group separation is bismuth 

(III), cadmlum(II), and zlnc(II). 

The technique of chromatographic separation is possible 

because in some cases there is significant difference In the 

distribution coefficients. This would require considerably 

longer columns and greater amounts of eluting agents. A good 

example of this is the possible separation of a mixture con­

taining thorium(IV), rare earths(III ), and the nickel group. 

The distribution coefficients in 95 percent ethyl alcohol 

-0.3 M hydrochloric acid, which would be the eluting agent, 

are 100, 20, and 4 to 5» respectively. The separation factor, 

although not large, is sufficient for a chromatographic tech­

nique. This separation is impossible in aqueous hydrochloric 

acid because all of these elements fall in the non-adsorbable 

group. Manganese(II) could also be added to this group and 

be separated. Its distribution value is 1000 in the 95 per­

cent ethyl alcohol-0.3 M hydrochloric acid eluting medium. 

However, preliminary experiments in this type of separation 

Indicated considerable tailing. 
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The desorption effect of perchloric acid was used to 

try to eliminate the tailing. Elution curves were determined 

for nickel(II) in 95 percent ethyl alcohol-0.3 M hydrochloric 

acid with added perchloric acid (0.001 M, 0.01 M, 0.05 M, and 

0.1 M). It was observed that as the perchloric acid concen­

tration was increased, the major portion of the nickel(II) was 

eluted faster. The tailing also diminished, but not enough 

to be useful as part of the eluting medium. 

Several other metals fit into this elution scheme even 

though their distribution coefficients were not determined. 

Comparison of these data to those found in aqueous hydro­

chloric acid by Kraus (39) leads to this conclusion. For ex­

ample, the rest of the alkaline earths would probably exhibit 

similar adsorption as does calcium(II). Thallium(III), mer-

cury(II), gold(III), and platinium metals would be similar to 

bismuth(III), germanium(IV) to cobalt(II), and gallium(III) to 

iron(III). However, it should be kept In mind that these are 

only qualitative conclusions and should be treated as such. 

Although nickel(II) can be separated from cobalt(II) or 

manganese(II), tailing as well as broad elution bands does 

occur. It would be a distinct advantage to eliminate this in 

the separation. The 55 percent isopropyl alcohol with vary­

ing hydrochloric acid eluting scheme does Just this. In Fig­

ure 29 nickel(II)-cobalt(II) elution curves of the two elu­

tion schemes are compared. In the ethyl alcohol elution 82 

percent ethyl alcohol-0.3 M hydrochloric acid was continued 
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after elution of nickel(II) until the cobalt(II) broke 

through. In the isopropyl alcohol elution 3 M hydrochloric 

acld-55 percent isopropyl alcohol was discontinued shortly 

after the elution of the nickel(II). The cobalt(II) band was 

still 4 cm. from the bottom of the resin column. Thus the co­

balt (II) breakthrough would probably occur at about 250 ml. of 

the 3 M eluting agent. The nickel(II) band is much sharper 

and there Is considerably less tailing In the Isopropyl alcohol 

eluting medium. A better separation factor is also indicated 

for the Isopropyl alcohol system. It should be noticed that a 

wider column was used in these latter separations as compared 

to those in Table 17. This allows greater loading with this 

larger cross-sectional area. However, larger volumes of elu­

ting agent are necessary for the separation. 

The isopropyl alcohol system (Figure 8 and 9) did not of­

fer a convenient separation of nlckel(ID-manganese(II)-cobalt 

(II). However, it is probable that a chromatographic technique 

could be used for the separation. Nickel(II) would be eluted 

with 4 M hydrochloric acld-55 percent isopropyl alcohol, man­

ganese with 3 M hydrochloric acld-55 percent iso-propyl al­

cohol and cobalt(II) with 1.3 M hydrochloric acld-55 percent 

isopropyl alcohol. A disadvantage of this scheme is the high 

viscosity of the 3 and 4 M acid eluting medium. This causes 

very slow flow rates, particularly in the 4 M eluting agent. 

Upon examination of Figure 13 it became apparent that nickel 

(II) could be separated from manganese(II) by using 96 percent 
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methyl alcohol-0.2 M hydrochloric acid. Nickel(II) and man­

ganese (II) have distribution coefficient values in this medium 

of 0 and 27, respectively. To test this separation the elu­

tion curve of a nickel(II)-manganese(II) mixture was determined 

and is reproduced in Figure 30. The curve shows sharp bands 

with very little tailing and an excellent separation factor. 

Elution curves for cobalt(II)-copper(II), manganese(II)-

copper(II), and nickel(II)-cobalt(iD^copper(II)-zinc(II mix­

tures were also determined using the isopropyl alcohol eluting 

scheme. Again, sharp bands with very little tailing and ex­

cellent separation factors were obtained. The curve for the 

four component mixture, which is very similar to the others, 

Is given In Figure 31. 

Separation of several mixtures, 1:1 by weight, using 

this elution scheme are given in Table 18. Dowex 1 X8> 200 to 

400 mesh, chloride form resin with a flow rate of 0.25 to 0.33 

ml./min. was used. Column dimensions are given in parenthesis 

in the Table and the volume of wash solution is included with 

the first eluted metal ion. The order of the metal ions is 

the order of elution. The latter of the two sampling tech­

niques was used in these separations. 

The usual approach to ion exchange separations is to take 

up the minor constituent and elute the major constituent. In 

this manner the constituents can be concentrated and the an­

alysis is thus less difficult. Also, in many cases, small 

columns are all that are necessary for the separation. It 
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would appear that no difficulty would be encountered In the 

use of the proposed method for this type of separation. Table 

19 contains some typical separations of this type. The ratios, 

by weight, are about 10 to 1. Eluting agents (not given in 

Table 19) are similar to the ones used in the separations list­

ed in Table 18. The quantities are about the same except in 

the case of the elution of the major constituent where an ad­

ditional 10 to 15 ml. of eluting agent was used. Similar 

flow rates were used. In all cases, the columns were 5 x 2.2 

cm. and the resin was the Dowex 1 X8, 200 to 400 mesh, chloride 

form resin. 

The measurement of distribution coefficients in mixed 

organic solvents (see Figure 26 and 27) offers a route to 

separation of the metal ions which are in the nonadsorbable 

group in aqueous hydrochloric acid. The methyl alcohol-ethyl 

alcohol eluting medium appears to have better separation fac­

tors than the methyl alcohol-isopropyl alcohol eluting med­

ium. The possibility of separation of a nickel(II), rare 

earth(III), and thorium(IV) mixture, which cannot be done in 

aqueous hydrochloric acid, was tested using the elution scheme 

suggested by the distribution data. Composition of the elu­

ting agents used were, for nickel(II), 23 percent methyl al-

cohol-73 percent ethyl alcohol-0.2 M hydrochloric acid, for 

dysprosium(III), 52 percent methyl alcohol-44 percent ethyl 

alcohol-0.2 M hydrochloric acid, and for thorium(IV), 96 per­

cent methyl alcohol-0.2 M hydrochloric acid. Naturally, for 
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a separation of nickel(II) from thorlum(IV), an eluting 

agent containing more methyl alcohol would be used. Elution 

curves were determined on a 6 X 2.2 cm. column of Dowex 1 X8, 

200 to 400 mesh, chloride form resin. Considerable tailing 

was observed, particularly in the case of nickel(II). Thus 

the separation of nickel(II) and dysprosium(III) is not very 

satisfactory. However, it appeared that nickel(II)-thorium 

(IV) and dysproslum(III)-thorium(IV) mixtures could be sep­

arated. The methyl alcohol eluting agent for thorium(IV) Is 

not ideal because thorium(IV) has a D value of about 2 in 

this medium. This Is partly responsible for the tailing In 

the thorium(IV) elution. 

The selection of the medium for elution, in all cases, 

depends on whether further separations are to be made. If 

no other metal ions are to be separated thorium(IV) could be 

eluted easily with aqueous hydrochloric acid. However, if 

manganese(II) is present the methyl alcohol eluting agent 

would be used. In this manner, thorium(IV) can be separated 

from manganese(II). An example of this separation is given 

In Table 18. It must be emphasized that to obtain quantita­

tive separations using the methyl alcohol-ethyl alcohol elu­

ting medium where tailing is a characteristic, extreme care 

should be used in selecting proper volumes for complete sep­

aration. 

To simplify the selection of conditions for separation, 
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the distribution data are summarized in Table 20. The metal 

Ions are listed in probable order of elution after adsorp­

tion from 95 percent ethyl alcohol-0.3 M hydrochloric acid. 

In several instances alternate eluting agents are available 

and can be interchanged without any loss in efficiency in 

the separation. Several separations suggested in the Table 

have not been proven, experimently, to be quantitative 

(compare to previous Tables of separations). However, from 

a purification point of view, where quantitative results are 

not required, these separations are of practical value. 

Also, as previously stated, many more metal ions will fit 

into this scheme. 
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Figure 29. Comparison of the isopropyl aloohol (solid line) and the ethyl aloohol 
(dotted line) elution schemes for a cobalt(II)-nlckel(II) separation. 
A 5 X 2.2 cm. column of Dowex 1 X8, 200 to 409 mesh, chloride form 
resin and a flow rate of 0.25 to 0.33 ml./min. used for the separa­
tion. Arrow signifies the fraction containing the last detectable 
trace of the metal ion 
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Figure 30. Elutlon curve for the separation of a nickel(II)-
manganese(II) mixture. A 6 x 2.2 cm. column of 
Dovex 1 X8, 200 to 400 mesh, chloride form resin 
and a flow rate of 0.25 to 0.33 ml/mln. used for 
the separation. Arrow signifies the fraction 
containing the last detectable trace of the metal 
Ion 
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zlno(II) mixture. A 6 x 2.2 cm. column of Dowex 1 X8, 200 to 400 mesh, 
chloride form resin and a flow rate of 0.25 to Ô.33 ml./mln. used for 
the separation. Arrow signifies the fraction containing the last 
detectable trace of the metal ion 
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Table 17. Separation and analysis of synthetic metal ion 
mixtures 

Metal mixtures (sample size and column dimensions) 
Elutlng agent8- Mg. taken Mg. found 

Ni(II) -Cu(II) (4 ml., 3 x 1.1 cm.) 

NI 2 ml. 95/3 Et0H-0.3 M HCI 
10 ml. 74$ Et0H-0.3 M HCI 7.17 7.17 

Ou 15 ml. 40$ EtOH-O.3 M HCI 7.08 7.01 

Ni(II). -Cu(II). -Zn(II) (4 ml., 3 x 1.1 cm.) 

Ni 2 ml. 95$ EtOH-O.3 M HCI 
9 ml. 7^$ EtOH-O.3 M HCI 7.17 7.17 

Cu 15 ml. 40$ Et0H-0.3 M HCI 7.08 7.02 
Zn 40 ml. 0.005 M aqueous HCI 7.15 7.16 

Mn(II). -Cu(II) (4 ml., 3 x 1.1 cm.) 

Mn 2 ml. 95$ EtOH-O.3 M HCI 
11 ml. 74$ EtOH-O.3 M HCI 7.16 7.13 

Cu 15 ml. 40$ EtOH-O.3 M HCI 7.08 7.02 

Ni(II). -Mn(II). -Cu(II) (4 ml.> 3 x 1.1 cm.) 

Ni 2 ml. 95$ EtOH-O.3 M HCI 
41 ml. 95$ Et0H-0.3 M HCI 7.17 7.11 

Mn 10 ml. 72$ EtOH-O.3 M HCI 7.16 7.12 
Cu 25 ml. 0.005 M aqueous HCI 7.08 7.02 

Ni (II)--Co(II). -Cu(II)-Zn(II) (4 ml., 6 x 1.1 cm. ) 

Ni 2 ml. 95$ EtOH-O.3 M HCI 
12 ml. 82$ EtOH-0.3 M HCI 7.17 7.10 

Co 17 ml. 72$ EtOH-O.3 M HCI 7.64 7.62 
Cu 15 ml. 40$ Et0H-0.3 M HCI 7.08 7.04 
Zn 40 ml. 0.005 M aqueous HCI 7.15 7.20 

aEtOH = ethyl alcohol 
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Table 17. (Continued) 

Metal mixtures (sample size and column dimensions) 
Elutlng agent* Mg. taken Mg. found 

Ni(II)-Co(II) (4 ml., 6 x 1.1 cm.) 

Ni 2 ml. 95$ Et0H-0.3 M HCI 
13 ml. 82$ Et0H-0.3 M HCI 7.17 7.23 

Co 15 ml. 40$ Et0H-0.3 M HCI 7-64 7.62 

Co(II)-Fe(III) (4 ml., 3 x 1.1 cm.) 

Co 2 ml. 95$ Et0H-0.3 M HCI 
10 ml. 72$ Et0H-0.3 M HCI 7.64 7.62 

Fe 23 ml. 40$ Et0H-0.3 M HCI 6.90 6.92 

Ni(II)-Co(II)-Fe(III)-Zn(II) (4 ml., 6 x 1.1 cm.) 

Ni 2 ml. 95$ Et0H-0.3 M HCI 
13 ml. 82$ EtOH-0.3 M HCI 7.17 7.21 

Co 15 ml. 70$ Et0H-0.3 M HCI ? . 6 o  7 . 6 3  
Fe 20 ml. 40$ Et0H-0.3 M HCI 6.90 6.90 
Zn 4o ml. 0.005 M aqueous HCI 6.91 6.82 

Ni(II)-Fe(III)-Bi(III) (4 ml., 3 x 1.1 cm.) 

Ni 2 ml. 95$ EtOH-O.3 M HCI 
6 ml. 72$ EtOH-O.3 M HCI 7.17 7.17 

Fe 12 ml. 40$ EtOH-O.3 M HCI 6.90 6.88 
Bi 25 ml. 1 M aqueous H2SO4 6.91 6.82 
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Table 18. Separation and analysis of synthetic metal Ion 
mixtures 

Metal mixture (column dimensions) 
Elutlng agenta>b>c Mg. taken Mg. found 

Ni(II)-Fe(III)-Bi(III) (6 x 2.2 cm. 

Ni 4 ml. 95$ Et0H-0.3 M HCI 
50 ml. 96$ Me0H-0.2 M HCI 8.96 8.93 

Fe 45 ml. 0.1 M HCI-55$ 2-PrOH 9.13 9.13 
Bi 90 ml. 1H aqueous H2SO4 8.6? 8.50 

Co(II)-Fe(III) (6 x 2.2 cm.) 

Co 4 ml. 95$ EtOH-O.3 M HCI 
60 ml. 1.3 M HCl-55$ 2-PrOH 9.52 9.59 

Fe 45 ml. 0.1 M HCl-55$ 2-PrOH 9.13 9.12 

Ni(II)-Mn(II)-Cu(II) (6 x 2.2 cm. 

Ni 8 ml. 95$ EtOH-O.3 M HCI 
47 ml. 96$ MeOH-O.2 M HCI 8.96 8.94 

Mn 80 ml. 3 M HCl-55$ 2-PrOH 8.96 9-00 
Cu 50 ml. 0.1 M HCl-55$ 2-PrOH 8.95 8.90 

Ni(II)-Mn(II)-Co(II)-Cu(II)-Zn(II) (6 x 2.2 cm. 

Ni 8 ml. 95$ EtOH-O.3 M HCI 
47 ml. 96$ MeOH-0.2 M HCI 8.96 8.99 

Mn 80 ml. 3 M HCI-55$ 2-PrOH 8.96 8.88 
Co 70 ml. 1.3 M HCI-55$ 2-PrOH 9-52 9-51 
Cu 50 ml. 0.1 M HCI-55$ 2-Pr0H 8.95 8.89 
Zn 60 ml. 0.005 M aqueous HCI 8.95 9«06 

aEt0H = ethyl alcohol 

^MeOH = methyl alcohol 

c2~PrOH = lsopropyl alcohol 
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Table 18. (Continued) 

Metal mixture (column dimensions) 
Elutlng Mg. taken Mg. found 

Ni(II) -Co(II) -Cu(II)-Bi(III) (6 x 2.2) 

Ni 8 ml. 95$ Et0H-0.3 M HCI 
4? ml. 96$ Me0H-0.2 M HCI 8.96 9.06 

Co 65 ml. 1.3 M HCl-55$ 2-PrOH 9.52 9.52 
Cu 4o ml. 0.1 M HCl-55$ 2-PrOH 8.95 8.98 
Bi 85 ml. 1 M aqueous H2SO4 8.67 8.54 

Dy(III)-Mn(II)-Cu(II)-Fe(III)-Bi(III) (6 x 2.2 cm.) 

8 ml. 95$ EtOH-O.3 M HCI 
47 ml. 96$ Me0H-0.2 M HCI 9.22 9.28 

Mn 80 ml. 3 M HCl.-55$ 2-PrOH 8.96 8.99 
Cu-Fe°- 50 ml. 0.1 M HCl-55$ 2-PrOH 

Cu 8.95 9.01 
Fe 9.13 9.06 

Bi 85 ml. 1 M aqueous H2SO4 8.67 8.67 

Ni(II). -Th(IV). -Mn(II)-Co(II)-Cu(II)-Fe(III) (6 x 2.2 cm. ) 

N1 8 ml. 95$ EtOH-O.3 M HCI 
73 ml. 48$ EtOH-48$ Me0H-0.2 M HCI 8.96 9.00 

Th 85 ml. 96% Me0H-0.2 M HCI 9.07 9.07 
Mn 85 ml. 3 M HCI-55$ 2-PrOH 8.96 8.97 
Co 55 ml. 1.3 M HCl-55$ 2-PrOH 9.52 9.57 
cu-: FeQ- 50 i al.  0.1 M HCl-55$ 2-PrOH 

Cu 8.95 8.97 
Fe 9.13 9.04 

Ca(II) -Mn(II) (5 x 2.2 cm.) 

Ca 2 ml. 95$ Et0H-0.3 M HCI 
8.41 56 ml. 96% Me0H-0.2 M HCI 8.34 8.41 

Mn 80 ml. 3 M HCl-55$ 2-PrOH 9.06 9-02 

Nl(II). -Mn(II) (5 x 2.2 cm.) 

Ni 2 ml. 95$ Et0H-0.3 M HCI 
4.45 4.51 56 ml. 96$ Me0H-0.2 M HCI 4.45 4.51 

Mn 80 ml. 3 M HCl-55$ -2-PrOH 9.06 9-07 

dCu-Fe eluted together and analyzed by a photometric 
titration (12?) with EDTA as titrant 



www.manaraa.com

104 

Table 19. Separation and analysis of synthetic metal ion 
mixtures. Column dlmenslons-5 x 2.2 cm 

Metal Mixture Mg. taken Mg. found 

Co(II)-Cu(II) 
Co 38.46 38.40 
Cu 4.46? 4.455 

Ni(II)-Co(II) 
Ni 35-46 35.48 
Co 4.822 4.817 

Co(II)-Fe(III) 
Co 38.46 38.49 
Fe 4.633 4.644 

Mn(II)-Codl) 
Mn 36.22 36.39 
Co 4.822 4.828 

Ca(II)-Mn(II) 
Ca 33-34 33.36 
Mn 4.510 4.599 

Ni(II-Mn(II) 
Ni 35-46 35.55 
Mn 4.510 4.654 
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Table 20. Approximate elutlon order of metal ions 

Elutlng agent Metals retained Metals eluted a 

60% methyl aloohol-40# ethyl 
aloohol-0.2 M HOI 

96# methyl aloohol-0.2 M HCI 

95% ethyl aloohol-0.3 M HCI 

82# ethyl aloohol-0.3 M HOI 

3 M HC1-55# leopropyl alcohol 

1.3 M HC1-55# leopropyl 
alcohol 

Th\ Mn2, Co2, Cu2, Fe3, R. E.3, Ni2, Ca2, 

UO22, Zn2, Cd2, Bl3 (VO2, Cr3, So3) 

Mh2, Co2, Cu2, Fe3, 

UO22, Zn2, Cd2, Bi3 

Mn2, Co2, Cu2, Fe3, 

U022, Zn2, Cd2, Bl3 

Co2, Cu2, Fe3, UO22, 

Zn2, Cd2, Bi3 

Co2, Cu2, Fe3, UO22, 

Zn2, Cd2, Bl3 

Cu2, Fe3, UO22, Zn2, 

Cd?, BI3 

TH^, R. E.3, Ni2, Ca2, 

VO2, Cr3, So3 

Chromatographic order 
of elutlon 

1. Ni2, Ca2, VO2, Cr3 
2. R. E.3 , Sc3 
3. Th% 

Ni2, Ca2, VO2, Cr3, 

R. E.3, Th^, (Mn2) 

Ni2, Ca2, VO2, Cr3, 

R. E.3, Th4, Mn2 

Co2, all previous 
metals 

aMetals in parentheses are partially eluted 
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Table 20. (Continued) 

Elutlng agent Metala retained Metals eluted 

72% ethyl aloohol-0.3 M HCI 

0.1 M HCI-55% Isopropyl alcohol 

Cu2, Fe3, UO22» Zn2 

Cd2, Bl3 

Zn2, Cd2, Bi3 

40# ethyl aloohol-0.3 M HCI Zn2, Cd2, Bi3 

0.005 M aqueous HCI 

1 M HgSO^ 

Bi3 

Co , all previous 

metals 

Cu2, Fe3, UO22 ,  all 

previous metals 

Cu2, Fe3, U022» all 

previous metals 

Zn2, Cd2, all previous 

metals 

Bl3, all previous 

metals 
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SUMMARY 

A systematic approach to anion exchange in partially 

nonaqueous solvents was initiated. Distribution coeffi­

cients of metal ions for Dowex 1 X8, chloride form resin in 

organic solvent-water mixtures containing hydrochloric acid 

were measured. The organic solvents used were methyl alco­

hol > ethyl alcohol, lsopropyl alcohol, acetone, and dioxane. 

When the organic solvent concentration Is increased 

and the hydrochloric acid concentration is held constant, 

the distribution coefficient will Increase. Similarly, if 

the hydrochloric acid concentration is increased while hold­

ing the organic solvent concentration constant, the distri­

bution coefficient will increase. The order of the distri­

bution coefficients in the alcohollc-acld-water mixtures was 

found to be: lsopropyl > ethyl > methyl alcohol. 

In many cases, distribution coefficients were found to 

be significantly higher than in water-hydrochloric acid sys­

tems. Several metal ions [thorium(IV), nickel(II), calcium 

(II), rare earths(III), chromlum(ITI), and vanadyl(IV)J 

which do not adsorb in aqueous hydrochloric acid were found 

to be adsorbed when an organic solvent is present. 

Three elutlon schemes for metal ion separations were pro­

posed. In the first scheme the elutlng agents contain 0.3 M 

hydrochloric acid with varying percent of ethyl alcohol. The 
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elutlng agents in the second scheme contain 55 percent lso­

propyl alcohol with varying concentrations of hydrochloric 

acid. The last scheme contains 0.2 M hydrochloric acid and 

a mixture of methyl and ethyl alcohol totaling 96 percent. 

Successful separations of a number of metal ion mixtures 

were performed using these elutlon schemes. 
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